Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs13040584 |
Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning | |
Zhu, Linglong; Zhang, Yonghong; Wang, Jiangeng; Tian, Wei; Liu, Qi; Ma, Guangyi; Kan, Xi; Chu, Ya | |
通讯作者 | Zhang, YH (corresponding author), Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China. ; Zhang, YH (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China. |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2021 |
卷号 | 13期号:4 |
英文摘要 | Accurate high spatial resolution snow depth mapping in arid and semi-arid regions is of great importance for snow disaster assessment and hydrological modeling. However, due to the complex topography and low spatial-resolution microwave remote-sensing data, the existing snow depth datasets have large errors and uncertainty, and actual spatiotemporal heterogeneity of snow depth cannot be effectively detected. This paper proposed a deep learning approach based on downscaling snow depth retrieval by fusion of satellite remote-sensing data with multiple spatial scales and diverse characteristics. The (Fengyun-3 Microwave Radiation Imager) FY-3 MWRI data were downscaled to 500 m resolution to match Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover, meteorological and geographic data. A deep neural network was constructed to capture detailed spectral and radiation signals and trained to retrieve the higher spatial resolution snow depth from the aforementioned input data and ground observation. Verified by in situ measurements, downscaled snow depth has the lowest root mean square error (RMSE) and mean absolute error (MAE) (8.16 cm, 4.73 cm respectively) among Environmental and Ecological Science Data Center for West China Snow Depth (WESTDC_SD, 9.38 cm and 5.36 cm), the Microwave Radiation Imager (MWRI) Ascend Snow Depth (MWRI_A_SD, 9.45 cm and 5.49 cm) and MWRI Descend Snow Depth (MWRI_D_SD, 10.55 cm and 6.13 cm) in the study area. Meanwhile, downscaled snow depth could provide more detailed information in spatial distribution, which has been used to analyze the decrease of retrieval accuracy by various topography factors. |
英文关键词 | downscaling deep learning snow depth MWRI data fusion |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000624443700001 |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
来源机构 | 南京信息工程大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/351484 |
作者单位 | [Zhu, Linglong; Zhang, Yonghong] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China; [Zhu, Linglong; Ma, Guangyi] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China; [Zhang, Yonghong] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China; [Wang, Jiangeng] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing 210044, Peoples R China; [Tian, Wei; Liu, Qi] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China; [Kan, Xi] Nanjing Univ Informat Sci & Technol, Binjiang Coll, Wuxi 214105, Jiangsu, Peoples R China; [Chu, Ya] China Meteorol Adm, Huayun Informat Technol Engn Co Ltd, Beijing 100081, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Linglong,Zhang, Yonghong,Wang, Jiangeng,et al. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning[J]. 南京信息工程大学,2021,13(4). |
APA | Zhu, Linglong.,Zhang, Yonghong.,Wang, Jiangeng.,Tian, Wei.,Liu, Qi.,...&Chu, Ya.(2021).Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning.REMOTE SENSING,13(4). |
MLA | Zhu, Linglong,et al."Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning".REMOTE SENSING 13.4(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。