Arid
DOI10.3390/rs13040584
Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning
Zhu, Linglong; Zhang, Yonghong; Wang, Jiangeng; Tian, Wei; Liu, Qi; Ma, Guangyi; Kan, Xi; Chu, Ya
通讯作者Zhang, YH (corresponding author), Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China. ; Zhang, YH (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2021
卷号13期号:4
英文摘要Accurate high spatial resolution snow depth mapping in arid and semi-arid regions is of great importance for snow disaster assessment and hydrological modeling. However, due to the complex topography and low spatial-resolution microwave remote-sensing data, the existing snow depth datasets have large errors and uncertainty, and actual spatiotemporal heterogeneity of snow depth cannot be effectively detected. This paper proposed a deep learning approach based on downscaling snow depth retrieval by fusion of satellite remote-sensing data with multiple spatial scales and diverse characteristics. The (Fengyun-3 Microwave Radiation Imager) FY-3 MWRI data were downscaled to 500 m resolution to match Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover, meteorological and geographic data. A deep neural network was constructed to capture detailed spectral and radiation signals and trained to retrieve the higher spatial resolution snow depth from the aforementioned input data and ground observation. Verified by in situ measurements, downscaled snow depth has the lowest root mean square error (RMSE) and mean absolute error (MAE) (8.16 cm, 4.73 cm respectively) among Environmental and Ecological Science Data Center for West China Snow Depth (WESTDC_SD, 9.38 cm and 5.36 cm), the Microwave Radiation Imager (MWRI) Ascend Snow Depth (MWRI_A_SD, 9.45 cm and 5.49 cm) and MWRI Descend Snow Depth (MWRI_D_SD, 10.55 cm and 6.13 cm) in the study area. Meanwhile, downscaled snow depth could provide more detailed information in spatial distribution, which has been used to analyze the decrease of retrieval accuracy by various topography factors.
英文关键词downscaling deep learning snow depth MWRI data fusion
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000624443700001
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构南京信息工程大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/351484
作者单位[Zhu, Linglong; Zhang, Yonghong] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China; [Zhu, Linglong; Ma, Guangyi] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China; [Zhang, Yonghong] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China; [Wang, Jiangeng] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing 210044, Peoples R China; [Tian, Wei; Liu, Qi] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China; [Kan, Xi] Nanjing Univ Informat Sci & Technol, Binjiang Coll, Wuxi 214105, Jiangsu, Peoples R China; [Chu, Ya] China Meteorol Adm, Huayun Informat Technol Engn Co Ltd, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Linglong,Zhang, Yonghong,Wang, Jiangeng,et al. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning[J]. 南京信息工程大学,2021,13(4).
APA Zhu, Linglong.,Zhang, Yonghong.,Wang, Jiangeng.,Tian, Wei.,Liu, Qi.,...&Chu, Ya.(2021).Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning.REMOTE SENSING,13(4).
MLA Zhu, Linglong,et al."Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning".REMOTE SENSING 13.4(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Linglong]的文章
[Zhang, Yonghong]的文章
[Wang, Jiangeng]的文章
百度学术
百度学术中相似的文章
[Zhu, Linglong]的文章
[Zhang, Yonghong]的文章
[Wang, Jiangeng]的文章
必应学术
必应学术中相似的文章
[Zhu, Linglong]的文章
[Zhang, Yonghong]的文章
[Wang, Jiangeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。