Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s12021-020-09499-z |
Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors | |
Bernal, Jose; Valverde, Sergi; Kushibar, Kaisar; Cabezas, Mariano; Oliver, Arnau; Llado, Xavier | |
通讯作者 | Bernal, J (corresponding author), Univ Girona, Comp Vis & Robot Inst, Girona, Spain. |
来源期刊 | NEUROINFORMATICS
![]() |
ISSN | 1539-2791 |
EISSN | 1559-0089 |
出版年 | 2021 |
卷号 | 19期号:3页码:477-492 |
英文摘要 | Brain atrophy quantification plays a fundamental role in neuroinformatics since it permits studying brain development and neurological disorders. However, the lack of a ground truth prevents testing the accuracy of longitudinal atrophy quantification methods. We propose a deep learning framework to generate longitudinal datasets by deforming T1-w brain magnetic resonance imaging scans as requested through segmentation maps. Our proposal incorporates a cascaded multi-path U-Net optimised with a multi-objective loss which allows its paths to generate different brain regions accurately. We provided our model with baseline scans and real follow-up segmentation maps from two longitudinal datasets, ADNI and OASIS, and observed that our framework could produce synthetic follow-up scans that matched the real ones (Total scans= 584; Median absolute error: 0.03 +/- 0.02; Structural similarity index: 0.98 +/- 0.02; Dice similarity coefficient: 0.95 +/- 0.02; Percentage of brain volume change: 0.24 +/- 0.16; Jacobian integration: 1.13 +/- 0.05). Compared to two relevant works generating brain lesions using U-Nets and conditional generative adversarial networks (CGAN), our proposal outperformed them significantly in most cases (p < 0.01), except in the delineation of brain edges where the CGAN took the lead (Jacobian integration: Ours - 1.13 +/- 0.05 vs CGAN - 1.00 +/- 0.02; p < 0.01). We examined whether changes induced with our framework were detected by FAST, SPM, SIENA, SIENAX, and the Jacobian integration method. We observed that induced and detected changes were highly correlated (Adj. R-2 > 0.86). Our preliminary results on harmonised datasets showed the potential of our framework to be applied to various data collections without further adjustment. |
英文关键词 | Cerebral atrophy Longitudinal atrophy synthesis Image generation Convolutional neural networks Brain MRI |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000604154700001 |
WOS关键词 | MULTIPLE-SCLEROSIS ; MATTER ATROPHY ; VOLUME CHANGES ; ROBUST ; ACCURATE ; MS ; QUANTIFICATION ; OPTIMIZATION ; REGISTRATION ; GRAY |
WOS类目 | Computer Science, Interdisciplinary Applications ; Neurosciences |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/351204 |
作者单位 | [Bernal, Jose; Valverde, Sergi; Kushibar, Kaisar; Cabezas, Mariano; Oliver, Arnau; Llado, Xavier] Univ Girona, Comp Vis & Robot Inst, Girona, Spain |
推荐引用方式 GB/T 7714 | Bernal, Jose,Valverde, Sergi,Kushibar, Kaisar,et al. Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors[J],2021,19(3):477-492. |
APA | Bernal, Jose,Valverde, Sergi,Kushibar, Kaisar,Cabezas, Mariano,Oliver, Arnau,&Llado, Xavier.(2021).Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors.NEUROINFORMATICS,19(3),477-492. |
MLA | Bernal, Jose,et al."Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors".NEUROINFORMATICS 19.3(2021):477-492. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。