Arid
DOI10.1007/s12021-020-09499-z
Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors
Bernal, Jose; Valverde, Sergi; Kushibar, Kaisar; Cabezas, Mariano; Oliver, Arnau; Llado, Xavier
通讯作者Bernal, J (corresponding author), Univ Girona, Comp Vis & Robot Inst, Girona, Spain.
来源期刊NEUROINFORMATICS
ISSN1539-2791
EISSN1559-0089
出版年2021
卷号19期号:3页码:477-492
英文摘要Brain atrophy quantification plays a fundamental role in neuroinformatics since it permits studying brain development and neurological disorders. However, the lack of a ground truth prevents testing the accuracy of longitudinal atrophy quantification methods. We propose a deep learning framework to generate longitudinal datasets by deforming T1-w brain magnetic resonance imaging scans as requested through segmentation maps. Our proposal incorporates a cascaded multi-path U-Net optimised with a multi-objective loss which allows its paths to generate different brain regions accurately. We provided our model with baseline scans and real follow-up segmentation maps from two longitudinal datasets, ADNI and OASIS, and observed that our framework could produce synthetic follow-up scans that matched the real ones (Total scans= 584; Median absolute error: 0.03 +/- 0.02; Structural similarity index: 0.98 +/- 0.02; Dice similarity coefficient: 0.95 +/- 0.02; Percentage of brain volume change: 0.24 +/- 0.16; Jacobian integration: 1.13 +/- 0.05). Compared to two relevant works generating brain lesions using U-Nets and conditional generative adversarial networks (CGAN), our proposal outperformed them significantly in most cases (p < 0.01), except in the delineation of brain edges where the CGAN took the lead (Jacobian integration: Ours - 1.13 +/- 0.05 vs CGAN - 1.00 +/- 0.02; p < 0.01). We examined whether changes induced with our framework were detected by FAST, SPM, SIENA, SIENAX, and the Jacobian integration method. We observed that induced and detected changes were highly correlated (Adj. R-2 > 0.86). Our preliminary results on harmonised datasets showed the potential of our framework to be applied to various data collections without further adjustment.
英文关键词Cerebral atrophy Longitudinal atrophy synthesis Image generation Convolutional neural networks Brain MRI
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000604154700001
WOS关键词MULTIPLE-SCLEROSIS ; MATTER ATROPHY ; VOLUME CHANGES ; ROBUST ; ACCURATE ; MS ; QUANTIFICATION ; OPTIMIZATION ; REGISTRATION ; GRAY
WOS类目Computer Science, Interdisciplinary Applications ; Neurosciences
WOS研究方向Computer Science ; Neurosciences & Neurology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/351204
作者单位[Bernal, Jose; Valverde, Sergi; Kushibar, Kaisar; Cabezas, Mariano; Oliver, Arnau; Llado, Xavier] Univ Girona, Comp Vis & Robot Inst, Girona, Spain
推荐引用方式
GB/T 7714
Bernal, Jose,Valverde, Sergi,Kushibar, Kaisar,et al. Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors[J],2021,19(3):477-492.
APA Bernal, Jose,Valverde, Sergi,Kushibar, Kaisar,Cabezas, Mariano,Oliver, Arnau,&Llado, Xavier.(2021).Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors.NEUROINFORMATICS,19(3),477-492.
MLA Bernal, Jose,et al."Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors".NEUROINFORMATICS 19.3(2021):477-492.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bernal, Jose]的文章
[Valverde, Sergi]的文章
[Kushibar, Kaisar]的文章
百度学术
百度学术中相似的文章
[Bernal, Jose]的文章
[Valverde, Sergi]的文章
[Kushibar, Kaisar]的文章
必应学术
必应学术中相似的文章
[Bernal, Jose]的文章
[Valverde, Sergi]的文章
[Kushibar, Kaisar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。