Arid
DOI10.1016/j.jafrearsci.2021.104244
Comparing four machine learning model performances in forecasting the alluvial aquifer level in a semi-arid region
El Bilali, Ali; Taleb, Abdeslam; Brouziyne, Youssef
通讯作者El Bilali, A (corresponding author), Hassan II Univ Casablanca, Fac Sci & Tech Mohammedia, Casablanca, Morocco.
来源期刊JOURNAL OF AFRICAN EARTH SCIENCES
ISSN1464-343X
EISSN1879-1956
出版年2021
卷号181
英文摘要Groundwater level fluctuation is a nonlinear and non-stationary system as it depends on several factors in the time and space scales. Conceptual models require several physical parameters whose estimation is delicate in poorly monitored areas. However, data-based models may be valuable for modelling and forecasting groundwater level over short and long terms. To that end, four machine learning models, namely: Support Vector Regression, k- Nearest Neighbour (k-NN), Random Forest (RF), and Artificial Neural Network (ANN), are trained, validated, and compared for predicting groundwater level (GWL) at seven piezometers on alluvial groundwater of Tanobart aquifer in Morocco. The results revealed that the ANN models succeeded properly in simulating GWL at five piezometers out of the total seven piezometers considered in this study (NSE = 0.69 to 0.8); the RF was satisfactory at five piezometers (NSE = 0.41 to 0.72) and SVR at three piezometers (NSE = 0.57 to 0.81); the k-NN was the poorest model among all the investigated models (NSE = 1.05 to 0.15). The uncertainty analysis showed that the selected models are accurate overall; the SVR model showed the best forecasting accuracy with the smallest 95% interval prediction error (0.25 m and 0.11 m) at one piezometer. This study provides new insight to forecast the GWL under a semi-arid context such Tanobart aquifer in Khemesset province, Morocco.
英文关键词Alluvial groundwater Random forest Artificial neural network Support vector regression Tanobart Morocco
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000660988700003
WOS关键词HYDROLOGICAL-ECONOMIC MODEL ; CLIMATE-CHANGE ; GROUNDWATER RESOURCES ; WATER MANAGEMENT ; PREDICTION ; MINERALIZATION ; VULNERABILITY ; SALINITY ; ANFIS ; BASIN
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/350646
作者单位[El Bilali, Ali; Taleb, Abdeslam] Hassan II Univ Casablanca, Fac Sci & Tech Mohammedia, Casablanca, Morocco; [Brouziyne, Youssef] Mohammed VI Polytech Univ, Int Water Res Inst, Benguerir, Morocco
推荐引用方式
GB/T 7714
El Bilali, Ali,Taleb, Abdeslam,Brouziyne, Youssef. Comparing four machine learning model performances in forecasting the alluvial aquifer level in a semi-arid region[J],2021,181.
APA El Bilali, Ali,Taleb, Abdeslam,&Brouziyne, Youssef.(2021).Comparing four machine learning model performances in forecasting the alluvial aquifer level in a semi-arid region.JOURNAL OF AFRICAN EARTH SCIENCES,181.
MLA El Bilali, Ali,et al."Comparing four machine learning model performances in forecasting the alluvial aquifer level in a semi-arid region".JOURNAL OF AFRICAN EARTH SCIENCES 181(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[El Bilali, Ali]的文章
[Taleb, Abdeslam]的文章
[Brouziyne, Youssef]的文章
百度学术
百度学术中相似的文章
[El Bilali, Ali]的文章
[Taleb, Abdeslam]的文章
[Brouziyne, Youssef]的文章
必应学术
必应学术中相似的文章
[El Bilali, Ali]的文章
[Taleb, Abdeslam]的文章
[Brouziyne, Youssef]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。