Arid
DOI10.1109/TII.2020.3004857
An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning
Ren, Tao; Niu, Jianwei; Liu, Xuefeng; Wu, Jiyan; Lei, Xiaohui; Zhang, Zhao
通讯作者Liu, XF (corresponding author), Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China. ; Liu, XF (corresponding author), Beihang Univ, Sch Comp Sci & Engn, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Beijing 100191, Peoples R China.
来源期刊IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
ISSN1551-3203
EISSN1941-0050
出版年2021
卷号17期号:6页码:4367-4378
英文摘要Large-scale canals with cascaded pools are constructed wordwide to divert water from rich to arid areas to mitigate water shortages. Efficient control of canals is essential to improve water-diversion performance. Numerous model-based approaches have been proposed and made great progress for canal control. However, when the predictive model is unavailable or unpromising for long time step predictions, model-free approaches could be considered as a possible way to achieve efficient control. Since most existing model-free approaches are focused on control of small canals or reservoirs, this article proposes a new control approach named policy and action reinforcement learning (PARL) for large-scale canals. We leverage the idea of divide and conquer to decompose the control task of large-scale canals into policy learning and action learning subtasks, and develop PARL by means of hierarchical reinforcement learning. Extensive experiments are conducted via numerical simulation on the case study of Chinese South to North Water Transfer Project, and experimental results show that PARL can achieve desirable performance improvements over other model-free learning approaches.
英文关键词Irrigation Water resources Logic gates Predictive models Reinforcement learning Genetic algorithms Numerical models Canal control hierarchical reinforcement learning (HRL) model-free multipool south to north water transfer project
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000626556300063
WOS类目Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/350539
作者单位[Ren, Tao; Niu, Jianwei; Liu, Xuefeng; Wu, Jiyan] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China; [Ren, Tao; Niu, Jianwei; Liu, Xuefeng; Wu, Jiyan] Beihang Univ, Sch Comp Sci & Engn, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Beijing 100191, Peoples R China; [Ren, Tao; Niu, Jianwei; Liu, Xuefeng; Wu, Jiyan] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China; [Niu, Jianwei] Zhengzhou Univ, Res Inst Ind Technol, Zhengzhou 450001, Peoples R China; [Lei, Xiaohui; Zhang, Zhao] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
推荐引用方式
GB/T 7714
Ren, Tao,Niu, Jianwei,Liu, Xuefeng,et al. An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning[J],2021,17(6):4367-4378.
APA Ren, Tao,Niu, Jianwei,Liu, Xuefeng,Wu, Jiyan,Lei, Xiaohui,&Zhang, Zhao.(2021).An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,17(6),4367-4378.
MLA Ren, Tao,et al."An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 17.6(2021):4367-4378.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Tao]的文章
[Niu, Jianwei]的文章
[Liu, Xuefeng]的文章
百度学术
百度学术中相似的文章
[Ren, Tao]的文章
[Niu, Jianwei]的文章
[Liu, Xuefeng]的文章
必应学术
必应学术中相似的文章
[Ren, Tao]的文章
[Niu, Jianwei]的文章
[Liu, Xuefeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。