Arid
DOI10.1109/LGRS.2020.2981965
A Branch Construction-Based CNN Denoiser for Desert Seismic Data
Lin, Hongbo; Wang, Shifu; Li, Yue
通讯作者Lin, HB (corresponding author), Jilin Univ, Dept Informat, Coll Commun Engn, Changchun 130012, Peoples R China.
来源期刊IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN1545-598X
EISSN1558-0571
出版年2021
卷号18期号:4页码:736-740
英文摘要Seismic random noise reduction is an indispensable step in seismic data processing. Due to complex geological condition and acquisition environment, random noise in the desert seismic data has spatiotemporally variant noise levels and weak similarity to the signals, which severely obscures the seismic signals and increases the difficulty to extract the reflected seismic signals. This letter focuses on suppressing the desert random noise based on a convolutional neural network (CNN) and proposes a branch construction-based denoising network (BCDNet). The BCDNet contains a denoising main network and a branched network added to the downsampled layer of the main network. With the branched network, the global context feature of the seismic data is obtained early in the network to guide the denoising task of the subsequent main network, which allows a flexible denoising for the desert random noise. Moreover, the downsampled layer is able to enlarge the receptive field of the network without increasing the network depth, thus leading to the better retention of the structural features in the seismic records. The extensive experiments and the field desert data application confirm that our BCDNet not only has a significant denoising capacity to desert seismic data but also is competitive in training time and memory cost.
英文关键词Noise reduction Training Convolution Radio frequency Data models Noise measurement Training data Convolutional neural network (CNN) deep learning denoise desert seismic random noise seismic exploration
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000633394400035
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/350528
作者单位[Lin, Hongbo; Wang, Shifu; Li, Yue] Jilin Univ, Dept Informat, Coll Commun Engn, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Lin, Hongbo,Wang, Shifu,Li, Yue. A Branch Construction-Based CNN Denoiser for Desert Seismic Data[J],2021,18(4):736-740.
APA Lin, Hongbo,Wang, Shifu,&Li, Yue.(2021).A Branch Construction-Based CNN Denoiser for Desert Seismic Data.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,18(4),736-740.
MLA Lin, Hongbo,et al."A Branch Construction-Based CNN Denoiser for Desert Seismic Data".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 18.4(2021):736-740.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Hongbo]的文章
[Wang, Shifu]的文章
[Li, Yue]的文章
百度学术
百度学术中相似的文章
[Lin, Hongbo]的文章
[Wang, Shifu]的文章
[Li, Yue]的文章
必应学术
必应学术中相似的文章
[Lin, Hongbo]的文章
[Wang, Shifu]的文章
[Li, Yue]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。