Arid
DOI10.5194/gmd-14-3421-2021
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Jiang, Zhenjiao; Mallants, Dirk; Gao, Lei; Munday, Tim; Mariethoz, Gregoire; Peeters, Luk
通讯作者Jiang, ZJ (corresponding author), Jilin Univ, Coll Environm & Resources, Key Lab Groundwater Resources & Environm, Minist Educ, Changchun 130021, Peoples R China. ; Jiang, ZJ (corresponding author), CSIRO Land & Water, Locked Bag 2, Glen Osmond, SA 5064, Australia.
来源期刊GEOSCIENTIFIC MODEL DEVELOPMENT
ISSN1991-959X
EISSN1991-9603
出版年2021
卷号14期号:6页码:3421-3435
英文摘要This study introduces an efficient deep-learning model based on convolutional neural networks with joint autoencoder and adversarial structures for 3D subsurface mapping from 2D surface observations. The method was applied to delineate paleovalleys in an Australian desert landscape. The neural network was trained on a 6400 km(2) domain by using a land surface topography as 2D input and an airborne electromagnetic (AEM)-derived probability map of paleovalley presence as 3D output. The trained neural network has a squared error < 0.10 across 99% of the training domain and produces a squared error < 0.10 across 93% of the validation domain, demonstrating that it is reliable in reconstructing 3D paleovalley patterns beyond the training area. Due to its generic structure, the neural network structure designed in this study and the training algorithm have broad application potential to construct 3D geological features (e.g., ore bodies, aquifer) from 2D land surface observations.
类型Article
语种英语
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000661359800001
WOS关键词VALLEYS ; ELECTROMAGNETICS ; CLASSIFICATION ; HETEROGENEITY ; REFLECTION ; SIMULATION ; AQUIFER ; RIVER
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
来源机构Commonwealth Scientific and Industrial Research Organisation
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/350432
作者单位[Jiang, Zhenjiao] Jilin Univ, Coll Environm & Resources, Key Lab Groundwater Resources & Environm, Minist Educ, Changchun 130021, Peoples R China; [Jiang, Zhenjiao; Mallants, Dirk; Gao, Lei] CSIRO Land & Water, Locked Bag 2, Glen Osmond, SA 5064, Australia; [Munday, Tim; Peeters, Luk] CSIRO Mineral Resources, Locked Bag 2, Glen Osmond, SA 5064, Australia; [Mariethoz, Gregoire] Univ Lausanne, Fac Geosci & Environm, Inst Earth Surface Dynam, Lausanne, Switzerland
推荐引用方式
GB/T 7714
Jiang, Zhenjiao,Mallants, Dirk,Gao, Lei,et al. Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping[J]. Commonwealth Scientific and Industrial Research Organisation,2021,14(6):3421-3435.
APA Jiang, Zhenjiao,Mallants, Dirk,Gao, Lei,Munday, Tim,Mariethoz, Gregoire,&Peeters, Luk.(2021).Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping.GEOSCIENTIFIC MODEL DEVELOPMENT,14(6),3421-3435.
MLA Jiang, Zhenjiao,et al."Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping".GEOSCIENTIFIC MODEL DEVELOPMENT 14.6(2021):3421-3435.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Zhenjiao]的文章
[Mallants, Dirk]的文章
[Gao, Lei]的文章
百度学术
百度学术中相似的文章
[Jiang, Zhenjiao]的文章
[Mallants, Dirk]的文章
[Gao, Lei]的文章
必应学术
必应学术中相似的文章
[Jiang, Zhenjiao]的文章
[Mallants, Dirk]的文章
[Gao, Lei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。