Arid
DOI10.1038/s41598-020-79142-z
Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation
Deasy, Jacob; Lio, Pietro; Ercole, Ari
通讯作者Deasy, J (corresponding author), Univ Cambridge, Comp Lab, William Gates Bldg,15 JJ Thomson Ave, Cambridge CB3 0FD, England.
来源期刊SCIENTIFIC REPORTS
ISSN2045-2322
出版年2020
卷号10期号:1
英文摘要Extensive monitoring in intensive care units (ICUs) generates large quantities of data which contain numerous trends that are difficult for clinicians to systematically evaluate. Current approaches to such heterogeneity in electronic health records (EHRs) discard pertinent information. We present a deep learning pipeline that uses all uncurated chart, lab, and output events for prediction of in-hospital mortality without variable selection. Over 21,000 ICU patients and tens of thousands of variables derived from the MIMIC-III database were used to train and validate our model. Recordings in the first few hours of a patient's stay were found to be strongly predictive of mortality, outperforming models using SAPS II and OASIS scores, AUROC 0.72 and 0.76 at 24 h respectively, within just 12 h of ICU admission. Our model achieves a very strong predictive performance of AUROC 0.85 (95% CI 0.83-0.86) after 48 h. Predictive performance increases over the first 48 h, but suffers from diminishing returns, providing rationale for time-limited trials of critical care and suggesting that the timing of decision making can be optimised and individualised.
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E ; SSCI
WOS记录号WOS:000603252200023
WOS关键词NEURAL-NETWORKS ; CHALLENGES ; RISK
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/349180
作者单位[Deasy, Jacob; Lio, Pietro] Univ Cambridge, Comp Lab, William Gates Bldg,15 JJ Thomson Ave, Cambridge CB3 0FD, England; [Ercole, Ari] Univ Cambridge, Addenbrookes Hosp, Div Anaesthesia, Hills Rd, Cambridge CB2 0QQ, England
推荐引用方式
GB/T 7714
Deasy, Jacob,Lio, Pietro,Ercole, Ari. Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation[J],2020,10(1).
APA Deasy, Jacob,Lio, Pietro,&Ercole, Ari.(2020).Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation.SCIENTIFIC REPORTS,10(1).
MLA Deasy, Jacob,et al."Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation".SCIENTIFIC REPORTS 10.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deasy, Jacob]的文章
[Lio, Pietro]的文章
[Ercole, Ari]的文章
百度学术
百度学术中相似的文章
[Deasy, Jacob]的文章
[Lio, Pietro]的文章
[Ercole, Ari]的文章
必应学术
必应学术中相似的文章
[Deasy, Jacob]的文章
[Lio, Pietro]的文章
[Ercole, Ari]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。