Arid
DESERT LOW FREQUENCY NOISE SUPPRESSION BASED ON MULTI-LEVEL WAVELET CONVOLUTION NEURAL NETWORK
Ju, Hanqing; Li, Yue; Wang, Hongzhou; Yang, Baojun
通讯作者Li, Y (corresponding author), Jilin Univ, Coll Commun Engn, Signal & Informat Proc, Changchun 130012, Peoples R China.
来源期刊JOURNAL OF SEISMIC EXPLORATION
ISSN0963-0651
出版年2020
卷号29期号:6页码:575-586
英文摘要Due to the effect of various environment factors, the random noise in desert seismic exploration has complex characteristics, including low frequency, non-Gaussian and frequency band aliasing of signal and noise. Therefore, it is difficult for the denoising processing. Aiming at this problem, a Multi-level Wavelet Convolution Neural Network (MWCNN) is proposed to suppress the desert noise. MWCNN is a combination of two-dimensional discrete wavelet transformation and convolution neural network. Specifically, Discrete Wavelet Transformation (DWT) and inverse wavelet transformation (IWT) are used to replace the pooling layer and up-convolution of U-net respectively. So that the trade-off between receptive field and computational efficiency can be achieved. Consequently, the expansion of the receptive field can obtain more overall information of the events. In this paper, by adjusting the training set and structure of MWCNN. it is applied to suppress the random noise in desert seismic exploration. Furthermore. compared with other neural networks. MWCNN achieves better better denoising effect and better events' continuity by enlarging the receptive field in desert seismic records. And experiments on simulated synthetic records and actual seismic records respectively show our trained MWCNN model achieve a satisfactory denoising performance for the random noise in desert seismic exploration.
英文关键词random noise denoising convolutional neural network
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000600433200004
WOS类目Geochemistry & Geophysics
WOS研究方向Geochemistry & Geophysics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/349047
作者单位[Ju, Hanqing; Li, Yue; Wang, Hongzhou] Jilin Univ, Coll Commun Engn, Signal & Informat Proc, Changchun 130012, Peoples R China; [Yang, Baojun] Jilin Univ, Coll Geoexplorat Sci & Technol, Geodetect & Informat Technol, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Ju, Hanqing,Li, Yue,Wang, Hongzhou,et al. DESERT LOW FREQUENCY NOISE SUPPRESSION BASED ON MULTI-LEVEL WAVELET CONVOLUTION NEURAL NETWORK[J],2020,29(6):575-586.
APA Ju, Hanqing,Li, Yue,Wang, Hongzhou,&Yang, Baojun.(2020).DESERT LOW FREQUENCY NOISE SUPPRESSION BASED ON MULTI-LEVEL WAVELET CONVOLUTION NEURAL NETWORK.JOURNAL OF SEISMIC EXPLORATION,29(6),575-586.
MLA Ju, Hanqing,et al."DESERT LOW FREQUENCY NOISE SUPPRESSION BASED ON MULTI-LEVEL WAVELET CONVOLUTION NEURAL NETWORK".JOURNAL OF SEISMIC EXPLORATION 29.6(2020):575-586.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ju, Hanqing]的文章
[Li, Yue]的文章
[Wang, Hongzhou]的文章
百度学术
百度学术中相似的文章
[Ju, Hanqing]的文章
[Li, Yue]的文章
[Wang, Hongzhou]的文章
必应学术
必应学术中相似的文章
[Ju, Hanqing]的文章
[Li, Yue]的文章
[Wang, Hongzhou]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。