Arid
DOI10.1155/2020/8875922
Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel
Cai, He; Liao, Taichang; Ren, Shaoqiang; Li, Shuguang; Huo, Runke; Yuan, Jie; Yang, Wencui
通讯作者Li, SG (corresponding author), China Railway 20th Bur Grp Co Ltd, Xian 710016, Peoples R China. ; Li, SG (corresponding author), Xian Univ Architecture & Technol, Sch Civil Engn, Xian 710055, Peoples R China.
来源期刊ADVANCES IN CIVIL ENGINEERING
ISSN1687-8086
EISSN1687-8094
出版年2020
卷号2020
英文摘要Desert sand is one of the current research hotspots in alternative materials for concrete aggregates. In the process of practical application, compressive strength is an essential prerequisite for studying other properties. Based on the current research situation, a prediction technology of compressive strength of desert sand concrete (DSC) is proposed based on an artificial neural network (ANN) and a particle swarm optimization (PSO). The technology is a prediction model that adjusts the network architecture by using the PSO method based on the ANN optimization model. Water-binder ratio, sand ratio, replacement rate of desert sand, desert sand type, fly ash content, silica fume content, air content, and slump were selected as the neural network's inputs. The compressive strength data of 118 different combinations of influencing variables were tested to establish the dataset. The results show that the PSO method is efficient for the ANN in DSC compressive strength research. Furthermore, referring to this method, DSC is applied to the shotcrete of tunnels in construction engineering successfully, and the dust particle content during construction is evaluated.
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000603612500003
WOS关键词ARTIFICIAL NEURAL-NETWORK ; HIGH-PERFORMANCE CONCRETE ; MECHANICAL-PROPERTIES ; MIX PROPORTION ; DESERTIFICATION ; OPTIMIZATION ; AGGREGATE ; ALGORITHM ; SILICA ; FACE
WOS类目Construction & Building Technology ; Engineering, Civil
WOS研究方向Construction & Building Technology ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/348685
作者单位[Cai, He; Liao, Taichang; Ren, Shaoqiang; Li, Shuguang] China Railway 20th Bur Grp Co Ltd, Xian 710016, Peoples R China; [Li, Shuguang; Huo, Runke] Xian Univ Architecture & Technol, Sch Civil Engn, Xian 710055, Peoples R China; [Yuan, Jie; Yang, Wencui] Harbin Inst Technol, Sch Transportat Sci & Technol, Harbin 150090, Peoples R China
推荐引用方式
GB/T 7714
Cai, He,Liao, Taichang,Ren, Shaoqiang,et al. Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel[J],2020,2020.
APA Cai, He.,Liao, Taichang.,Ren, Shaoqiang.,Li, Shuguang.,Huo, Runke.,...&Yang, Wencui.(2020).Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel.ADVANCES IN CIVIL ENGINEERING,2020.
MLA Cai, He,et al."Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel".ADVANCES IN CIVIL ENGINEERING 2020(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, He]的文章
[Liao, Taichang]的文章
[Ren, Shaoqiang]的文章
百度学术
百度学术中相似的文章
[Cai, He]的文章
[Liao, Taichang]的文章
[Ren, Shaoqiang]的文章
必应学术
必应学术中相似的文章
[Cai, He]的文章
[Liao, Taichang]的文章
[Ren, Shaoqiang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。