Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.scitotenv.2020.143768 |
Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe | |
Liu, Wei; Yuan, Wenping; Xu, Sutie; Shao, Changliang; Hou, Longyu; Xu, Wenfang; Shi, Huiqiu; Pan, Qingmin; Li, Linghao; Kardol, Paul | |
通讯作者 | Pan, QM ; Li, LH (corresponding author), Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China. |
来源期刊 | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
ISSN | 0048-9697 |
EISSN | 1879-1026 |
出版年 | 2021 |
卷号 | 757 |
英文摘要 | Steppe soils are important biological sinks for atmospheric methane (CH4), but the strength of CH4 uptake remains uncertain due to large spatiotemporal variation and the lack of in situ measurements at regional scale. Here, we report the seasonal and spatial patterns of CH4 uptake across a 1200 km transect in arid and semi-arid steppe ecosystems in Inner Mongolia, ranging from meadow steppe in the east plain to typical and desert steppes on the west plateau. In general, seasonal patterns of CH4 uptake were site specific, with unimodal seasonal curves in meadow and typical steppes and a decreasing seasonal trend in desert steppe. Soil moisture was the dominant factor explaining the seasonal patterns of CH4 uptake, and CH4 uptake rate decreased with an increase in soil moisture. Across the transect, CH4 uptake showed a skewed unimodal spatial pattern, with the peak rate observed in the typical steppe sites and with generally higher uptake rates in the west plateau than in the east plain. Soil moisture, together with soil temperature, soil total carbon, and aboveground plant biomass, were the main drivers of the regional patterns of CH4 uptake rate. These findings are important for model development to more precisely estimate the soil CH4 sink capacity in arid and semi-arid regions. (C) 2020 Elsevier B.V. All rights reserved. |
英文关键词 | Carbon cycle Global warming Precipitation gradient Regional scale Soil moisture Steppe type |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000604432900049 |
WOS关键词 | PLANT-SPECIES DIVERSITY ; ATMOSPHERIC METHANE ; FOREST SOILS ; LAND-USE ; OXIDATION ; CH4 ; FLUXES ; TEMPERATE ; NITROGEN ; N2O |
WOS类目 | Environmental Sciences |
WOS研究方向 | Environmental Sciences & Ecology |
来源机构 | 中国科学院植物研究所 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/348161 |
作者单位 | [Liu, Wei; Hou, Longyu; Shi, Huiqiu; Pan, Qingmin; Li, Linghao] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China; [Liu, Wei] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Yuan, Wenping; Xu, Wenfang] Sun Yat Sen Univ, Ctr Monsoon & Environm Res, Sch Atmospher Sci, Zhuhai 519082, Guangdong, Peoples R China; [Xu, Sutie] Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 E J Chapman Dr, Knoxville, TN 37996 USA; [Shao, Changliang] Chinese Acad Agr Sci, Natl Hulunber Grassland Ecosyst Observat & Res St, Beijing 100081, Peoples R China; [Shao, Changliang] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China; [Kardol, Paul] Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden |
推荐引用方式 GB/T 7714 | Liu, Wei,Yuan, Wenping,Xu, Sutie,et al. Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe[J]. 中国科学院植物研究所,2021,757. |
APA | Liu, Wei.,Yuan, Wenping.,Xu, Sutie.,Shao, Changliang.,Hou, Longyu.,...&Kardol, Paul.(2021).Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe.SCIENCE OF THE TOTAL ENVIRONMENT,757. |
MLA | Liu, Wei,et al."Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe".SCIENCE OF THE TOTAL ENVIRONMENT 757(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。