Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs13010122 |
A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data | |
Tao, Liangliang; Ryu, Dongryeol; Western, Andrew; Boyd, Dale | |
通讯作者 | Ryu, D (corresponding author), Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia. |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2021 |
卷号 | 13期号:1 |
英文摘要 | The temperature vegetation dryness index (TVDI) has been commonly implemented to estimate regional soil moisture in arid and semi-arid regions. However, the parameterization of the dry edge in the TVDI model is performed with a constraint to define the maximum water stress conditions. Mismatch of the spatial scale between visible and thermal bands retrieved from remotely sensed data and terrain variations also affect the effectiveness of the TVDI. Therefore, this study proposed a new drought index named the condition vegetation drought index (CVDI) to monitor the temporal and spatial variations of soil moisture status by substituting the land surface temperature (LST) with the modified perpendicular drought index (MPDI). In situ soil moisture observations at crop and pasture sites in Victoria were used to validate the effectiveness of the CVDI. The results indicate that the dry and wet edges in the parameterization scheme of the CVDI formed a better-defined trapezoid shape than that of the TVDI. Compared with the MPDI and TVDI for soil moisture monitoring at crop sites, the CVDI exhibited a performance superior to the MPDI and TVDI in most days where the coefficients of determination (R-2) achieved can reach to 0.67 on DOY023, 137, 274 and 0.71 on DOY 322 and reproduced more accurate spatial and seasonal variation of soil moisture. Moreover, the CVDI showed higher correlation with the Australian Water Resource Assessment Landscape (AWRA-L) soil moisture product on temporal scales. The R-2 can reach to 0.69 and the root mean square error (RMSE) is also much better than that of the MPDI and TVDI. Overall, it can be concluded that the CVDI appears to be a feasible method and can be successfully used in regional soil moisture monitoring. |
英文关键词 | soil moisture TVDI condition vegetation drought index AWRA-L MPDI MODIS |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000606048400001 |
WOS关键词 | LAND-SURFACE TEMPERATURE ; WATERSHED SCALE ; VEGETATION ; TVDI ; RED |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
来源机构 | 南京信息工程大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/348142 |
作者单位 | [Tao, Liangliang] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Peoples R China; [Tao, Liangliang; Ryu, Dongryeol; Western, Andrew] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia; [Boyd, Dale] Dept Jobs Precincts & Reg, Biosecur & Agr Serv Branch, Echuca, Vic 3564, Australia |
推荐引用方式 GB/T 7714 | Tao, Liangliang,Ryu, Dongryeol,Western, Andrew,et al. A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data[J]. 南京信息工程大学,2021,13(1). |
APA | Tao, Liangliang,Ryu, Dongryeol,Western, Andrew,&Boyd, Dale.(2021).A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data.REMOTE SENSING,13(1). |
MLA | Tao, Liangliang,et al."A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data".REMOTE SENSING 13.1(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。