Arid
DOI10.3390/rs13010122
A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data
Tao, Liangliang; Ryu, Dongryeol; Western, Andrew; Boyd, Dale
通讯作者Ryu, D (corresponding author), Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2021
卷号13期号:1
英文摘要The temperature vegetation dryness index (TVDI) has been commonly implemented to estimate regional soil moisture in arid and semi-arid regions. However, the parameterization of the dry edge in the TVDI model is performed with a constraint to define the maximum water stress conditions. Mismatch of the spatial scale between visible and thermal bands retrieved from remotely sensed data and terrain variations also affect the effectiveness of the TVDI. Therefore, this study proposed a new drought index named the condition vegetation drought index (CVDI) to monitor the temporal and spatial variations of soil moisture status by substituting the land surface temperature (LST) with the modified perpendicular drought index (MPDI). In situ soil moisture observations at crop and pasture sites in Victoria were used to validate the effectiveness of the CVDI. The results indicate that the dry and wet edges in the parameterization scheme of the CVDI formed a better-defined trapezoid shape than that of the TVDI. Compared with the MPDI and TVDI for soil moisture monitoring at crop sites, the CVDI exhibited a performance superior to the MPDI and TVDI in most days where the coefficients of determination (R-2) achieved can reach to 0.67 on DOY023, 137, 274 and 0.71 on DOY 322 and reproduced more accurate spatial and seasonal variation of soil moisture. Moreover, the CVDI showed higher correlation with the Australian Water Resource Assessment Landscape (AWRA-L) soil moisture product on temporal scales. The R-2 can reach to 0.69 and the root mean square error (RMSE) is also much better than that of the MPDI and TVDI. Overall, it can be concluded that the CVDI appears to be a feasible method and can be successfully used in regional soil moisture monitoring.
英文关键词soil moisture TVDI condition vegetation drought index AWRA-L MPDI MODIS
类型Article
语种英语
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:000606048400001
WOS关键词LAND-SURFACE TEMPERATURE ; WATERSHED SCALE ; VEGETATION ; TVDI ; RED
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构南京信息工程大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/348142
作者单位[Tao, Liangliang] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Peoples R China; [Tao, Liangliang; Ryu, Dongryeol; Western, Andrew] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia; [Boyd, Dale] Dept Jobs Precincts & Reg, Biosecur & Agr Serv Branch, Echuca, Vic 3564, Australia
推荐引用方式
GB/T 7714
Tao, Liangliang,Ryu, Dongryeol,Western, Andrew,et al. A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data[J]. 南京信息工程大学,2021,13(1).
APA Tao, Liangliang,Ryu, Dongryeol,Western, Andrew,&Boyd, Dale.(2021).A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data.REMOTE SENSING,13(1).
MLA Tao, Liangliang,et al."A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data".REMOTE SENSING 13.1(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Liangliang]的文章
[Ryu, Dongryeol]的文章
[Western, Andrew]的文章
百度学术
百度学术中相似的文章
[Tao, Liangliang]的文章
[Ryu, Dongryeol]的文章
[Western, Andrew]的文章
必应学术
必应学术中相似的文章
[Tao, Liangliang]的文章
[Ryu, Dongryeol]的文章
[Western, Andrew]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。