Arid
DOI10.3390/rs13020233
Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices
Vuorinne, Ilja; Heiskanen, Janne; Pellikka, Petri K. E.
通讯作者Heiskanen, J (corresponding author), Univ Helsinki, Dept Geosci & Geog, Helsinki 00014, Finland. ; Heiskanen, J (corresponding author), Univ Helsinki, Inst Atmospher & Earth Syst Res, Fac Sci, Helsinki 00014, Finland.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2021
卷号13期号:2
英文摘要Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha(-1)) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha(-1) (mean biomass 10.6 Mg ha(-1)). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.
英文关键词generalized additive models remote sensing sisal crassuleacean acid metabolism multispectral precision agriculture bioenergy carbon
类型Article
语种英语
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:000611954100001
WOS关键词RED-EDGE ; LANDSAT ; COVER ; PERFORMANCE ; YIELD ; RESOLUTION ; SCALES
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/348130
作者单位[Vuorinne, Ilja; Heiskanen, Janne; Pellikka, Petri K. E.] Univ Helsinki, Dept Geosci & Geog, Helsinki 00014, Finland; [Heiskanen, Janne] Univ Helsinki, Inst Atmospher & Earth Syst Res, Fac Sci, Helsinki 00014, Finland; [Pellikka, Petri K. E.] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430000, Peoples R China
推荐引用方式
GB/T 7714
Vuorinne, Ilja,Heiskanen, Janne,Pellikka, Petri K. E.. Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices[J],2021,13(2).
APA Vuorinne, Ilja,Heiskanen, Janne,&Pellikka, Petri K. E..(2021).Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices.REMOTE SENSING,13(2).
MLA Vuorinne, Ilja,et al."Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices".REMOTE SENSING 13.2(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vuorinne, Ilja]的文章
[Heiskanen, Janne]的文章
[Pellikka, Petri K. E.]的文章
百度学术
百度学术中相似的文章
[Vuorinne, Ilja]的文章
[Heiskanen, Janne]的文章
[Pellikka, Petri K. E.]的文章
必应学术
必应学术中相似的文章
[Vuorinne, Ilja]的文章
[Heiskanen, Janne]的文章
[Pellikka, Petri K. E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。