Arid
DOI10.1117/12.2558172
Hyperspectral vegetation identification utilizing polynomial fitting for dimensionality reduction
van der Laan, John D.; Redman, Brian J.; Anderson, Dylan Z.; West, R. Derek; Yocky, David
通讯作者van der Laan, JD (corresponding author), Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA.
会议名称Conference on Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI held at SPIE Defense + Commercial Sensing Conference
会议日期APR 27-MAY 08, 2020
会议地点ELECTR NETWORK
英文摘要Identification of vegetation species and type is important in many chemical, biological, radiological, nuclear, and explosive sensing applications. For instance, emergence of non-climax species in an area may be indicative of anthropogenic activity which can complement prompt signatures for underground nuclear explosion detection and localization. To explore signatures of underground nuclear explosions, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of 274 visible and near-infrared wavebands over 4.3 km(2) of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. Previous work has shown that a vegetation spectral derivative can be more indicative of species than the measured value of each band. However, applying a spectral derivative amplifies any noise in the spectrum and reduces the benefit of the derivative analysis. Fitting the spectra with a polynomial can provide the slope information (derivative) without amplifying noise. In this work, we simultaneously capture slope and curvature information and reduce the dimensionality of remotely sensed hyperspectral imaging data. This is performed by employing a 2nd order polynomial fit across spectral bands of interest. We then compare the classification accuracy of a support vector machine classifier fit to the polynomial dimensionality reduction technique and the same support vector machine fit to the same number of components from principle component analysis.
英文关键词hyperspectral imagery underground nuclear explosions unmanned aerial systems vegetation classification
来源出版物CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XXI
ISSN0277-786X
EISSN1996-756X
出版年2020
卷号11416
ISBN978-1-5106-3610-1
出版者SPIE-INT SOC OPTICAL ENGINEERING
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000590002900022
WOS关键词CLASSIFICATION ; INDEXES ; UAV
WOS类目Chemistry, Applied ; Optics ; Spectroscopy
WOS研究方向Chemistry ; Optics ; Spectroscopy
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/337093
作者单位[van der Laan, John D.; Redman, Brian J.; Anderson, Dylan Z.; West, R. Derek; Yocky, David] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA
推荐引用方式
GB/T 7714
van der Laan, John D.,Redman, Brian J.,Anderson, Dylan Z.,et al. Hyperspectral vegetation identification utilizing polynomial fitting for dimensionality reduction[C]:SPIE-INT SOC OPTICAL ENGINEERING,2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[van der Laan, John D.]的文章
[Redman, Brian J.]的文章
[Anderson, Dylan Z.]的文章
百度学术
百度学术中相似的文章
[van der Laan, John D.]的文章
[Redman, Brian J.]的文章
[Anderson, Dylan Z.]的文章
必应学术
必应学术中相似的文章
[van der Laan, John D.]的文章
[Redman, Brian J.]的文章
[Anderson, Dylan Z.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。