Arid
基于指标自动筛选的新疆开孔河流域生态健康评价
其他题名Ecological health assessment of Kaikong River Basin based on automatic screening of indicators in Xinjiang
汪小钦; 林梦婧; 丁哲; 周珏; 汪传建; 陈劲松
来源期刊生态学报
ISSN1000-0933
出版年2020
卷号40期号:13页码:4302-4315
中文摘要生态健康评价对了解区域生态健康状况和促进区域可持续发展具有重要意义,如何自动筛选出能反映生态系统特性的重要指标,是生态健康定量评估的关键问题。基于压力-状态-响应(PSR,Press-State-Response)框架和生态等级网络框架(EHN, Ecological Hierarchy Network),通过文献调研和因果分析建立要素层与指标层之间的交叉联系,构建了生态健康评价网状指标体系;在保证指标体系完备性基础上,通过结合主成分分析和熵权法的候选指标权重的客观计算,基于目标优化理论构建了评价指标的自动筛选模型,并基于中选指标计算了新疆开孔河流域20012017年生态健康指数(EHCI,Ecological Health Comprehensive Indexes),分析其空间分异和时间变化特征。结果表明:利用所建立的评价指标自动筛选模型,开孔河流域生态健康评价指标由31个候选指标自动筛选出了17个中选指标,用54.8%的指标表达了85.98%的信息,中选的17个指标在干旱/半干旱区域有关文献中应用较多,使用频次比例都在20%以上,其中归一化植被指数(NDVI,Normalized Difference Vegetation Index)、年降水量和植被覆盖度(FVC,Fractional Vegetation Coverage)3个指标的使用频次百分比均超过了50%,说明指标自动筛选模型的合理性;开孔河流域空间分布差异显著,总体上西北高、东南低,东南部和中部绿洲区外围生态健康状况较差,西北部河谷地带和中部两大绿洲区生态健康状况较好;17年来,流域生态质量整体趋于改善,显著改善区域占10.26%,远高于显著退化的1.61%,显著改善区域以孔雀河绿洲最为明显。开孔河流域生态健康的总体好转趋势说明区域生态综合治理取得一定成效。
英文摘要Ecological health assessment is of great significance for understanding regionally ecological health status and promoting regional sustainable development. How to automatically screen out important indicators that reflect the characteristics of ecosystems is a key issue for quantitative assessment of ecological health. Based on the pressure-stateresponse (PSR) framework and Ecological Hierarchy Network (EHN), this paper establishes a cross-link between the feature layer and indicator layer through literature research and causal analysis, and builds a network indicator system for ecological health assessment. On the basis of ensuring the completeness of the indicator system, by combining the objective calculation of candidate components weights with principal component analysis and entropy weight method, an automatic screening model of evaluation indicators is constructed based on the target optimization theory. The ecological health comprehensive indexes (EHCI) of 20012017 in the Kaikong River Basin of Xinjiang were calculated based on the selected indicators, then spatial differentiation and time variation characteristics of EHCI were analyzed. The results showed that, using the established indicator automatic screening model, the eco-health evaluation index of the Kaikong River Basin automatically selected 17 indicators from 31 candidate indicators, and expressed 85.98% of the information with 54.8% of the indicators. The selected indicators have been widely used in the relevant literature, and the use frequency of the selected indicators was all above 20%. The frequency percentages of normalized difference vegetation index (NDVI), annual precipitation and fractional vegetation coverage (FVC) were all over 50%, indicating the rationality of the indicator automatic screening model. The EHCI′s spatial distribution in the Kaikong river basin was significantly different, generally higher in the northwest and lower in the southeast. The ecological health in the southeastern and central oasis areas was poor, and the northwest valley and the two oasis regions in the central region was good. In the past 17 years, the overall ecological quality of the river basin has improved. The area of significant improvement was 10.26%, mainly distributing in the Peacock River Oasis, far higher than the 1.61% of significant degradation. The overall ecological health improvement in the Kaikong river basin indicates that regionally ecological comprehensive management has achieved good outcomes.
中文关键词生态健康评价 ; 指标自动筛选模型 ; 网状指标体系 ; 压力-状态-响应(PSR)框架 ; 新疆开孔河流域
英文关键词ecological health assessment automatic screening model network index system pressure-state-response (PSR) framework Xinjiang Kaikong River Basin
类型Article
语种中文
收录类别CSCD
WOS研究方向Environmental Sciences & Ecology
CSCD记录号CSCD:6770678
来源机构石河子大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/336724
作者单位汪小钦, 福州大学,数字中国研究院(福建), 空间数据挖掘和信息共享教育部重点实验室;;卫星空间信息技术综合应用国家地方联合工程研究中心, 福州, 福建 350108, 中国.; 林梦婧, 福州大学,数字中国研究院(福建), 空间数据挖掘和信息共享教育部重点实验室;;卫星空间信息技术综合应用国家地方联合工程研究中心, 福州, 福建 350108, 中国.; 丁哲, 福州大学,数字中国研究院(福建), 空间数据挖掘和信息共享教育部重点实验室;;卫星空间信息技术综合应用国家地方联合工程研究中心, 福州, 福建 350108, 中国.; 周珏, 福州大学,数字中国研究院(福建), 空间数据挖掘和信息共享教育部重点实验室;;卫星空间信息技术综合应用国家地方联合工程研究中心, 福州, 福建 350108, 中国.; 汪传建, 石河子大学信息科学与技术学院, 兵团空间信息工程技术研究中心, 石河子, 新疆 832000, 中国.; 陈劲松, 中国科学院深圳先进技术研究院空间信息计算与分析中心, 深圳, 广东 518055, 中国.
推荐引用方式
GB/T 7714
汪小钦,林梦婧,丁哲,等. 基于指标自动筛选的新疆开孔河流域生态健康评价[J]. 石河子大学,2020,40(13):4302-4315.
APA 汪小钦,林梦婧,丁哲,周珏,汪传建,&陈劲松.(2020).基于指标自动筛选的新疆开孔河流域生态健康评价.生态学报,40(13),4302-4315.
MLA 汪小钦,et al."基于指标自动筛选的新疆开孔河流域生态健康评价".生态学报 40.13(2020):4302-4315.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[汪小钦]的文章
[林梦婧]的文章
[丁哲]的文章
百度学术
百度学术中相似的文章
[汪小钦]的文章
[林梦婧]的文章
[丁哲]的文章
必应学术
必应学术中相似的文章
[汪小钦]的文章
[林梦婧]的文章
[丁哲]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。