Arid
基于机载LiDAR点云的道路提取算法研究
其他题名A study of methods for road extraction from airborne LiDAR data
陈健华
来源期刊测绘工程
ISSN1006-7949
出版年2020
卷号29期号:3页码:51-55
中文摘要提出一种对点云特征信息进行聚类的方法,以提取机载LiDAR数据中的道路。通过采用软件ENVI 5.3反复建立三角网实现点云滤波获取地面点云,且采用零均值标准化对地面点云进行标准化,以消除其量纲。然后进一步利用K-means++方法对点云三维坐标聚类实现点云分割,以获取包含道路点云的类别,且对该类别中点云的高度信息进行聚类以提取道路点云。以荒漠植被区机载LiDAR为研究区,对比直接对点云高度信息聚类的结果表明:在设置相同聚类参数的基础上,直接进行高度聚类的SSE总和为2 550.714,所提出的先分割后聚类方法获取的SSE总和为73.696,比直接进行高度聚类的SSE总和低2 477.018,说明本方法使K-means++性能更好。对比运算速度发现,虽然采用该方法聚类消耗时间比直接聚类消耗时间多16s,但提取结果更好,可去除非道路点云3 673个。
英文摘要This paper uses unmanned aerial vehicle(UAV)to load light detection and ranging(LiDAR) VUX-1and obtained original point cloud data.After getting data,it uses Riegl LMS series software to process point clouds.On the basis of processing,it intercepts test area point clouds as study data in order to verify feasibility of this paper's methods.The total number of study original point clouds is 272,493. And then,a method for clustering using point cloud feature information is proposed to realize the extraction of airborne LiDAR data roads.Firstly,it uses software ENVI 5.3to achieve the point cloud by repeatedly establishing a triangulation network.Then,it uses software Matlab extracted ground point cloud three-dimensional coordinates and echo intensity of point cloud information.Of course,it also uses the Python language to program for achieving methods,which are zero-mean standardization and K -means ++clustering.Secondly,it uses the K-means++ method to achieve point cloud segmentation by threedimensional point cloud clustering.After that,it obtains the category containing the road point cloud and clustered point cloud height information of this category to extract road point clouds.This paper compares direct clustering of point cloud height information.Results show that after setting the same clustering parameters,the sum of the SSEs that are directly clustered is 2 557.714,and the sum of the SSEs obtained by the segmentation and clustering method proposed in this paper is 73.696,which is lower than the total SSE sum of the directly height clustered 2 477.018.It means that paper method can make the performance of K-means++ better.Comparing the speed of operation,it is found that,although the clustering time consumed by paper method is 16slonger than that of direct height clustering,the extraction result is better and the non-road point cloud 3637can be removed.
中文关键词机载LiDAR ; 零均值标准化 ; K-means++聚类 ; 点云三维坐标 ; 簇内误差平方和
英文关键词UAV LiDAR zero-mean standardization K-means++clustering method point cloud threedimensional coordinates SSE
类型Article
语种中文
收录类别CSCD
WOS研究方向Geology
CSCD记录号CSCD:6750446
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/336632
作者单位陈健华, 广州市城市规划勘测设计研究院, 广州, 广东 510000, 中国.
推荐引用方式
GB/T 7714
陈健华. 基于机载LiDAR点云的道路提取算法研究[J],2020,29(3):51-55.
APA 陈健华.(2020).基于机载LiDAR点云的道路提取算法研究.测绘工程,29(3),51-55.
MLA 陈健华."基于机载LiDAR点云的道路提取算法研究".测绘工程 29.3(2020):51-55.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈健华]的文章
百度学术
百度学术中相似的文章
[陈健华]的文章
必应学术
必应学术中相似的文章
[陈健华]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。