Arid
DOI10.3788/LOP55.113002
Prediction of Soil Moisture Content by Selecting Spectral Characteristics Using Random Forest Method
Bao Qingling; Ding Jianli; Wang Jingzhe
通讯作者Ding, JL
来源期刊LASER & OPTOELECTRONICS PROGRESS
ISSN1006-4125
出版年2018
卷号55期号:11
英文摘要In order to more accurately analyze the importance of spectral absorption characteristic parameters, which in different soil moisture absorption bands in soil spectra, in soil moisture content estimation, we collect 38 soil samples in Ugan-Kuqa river oasis in Xinjiang to measure soil spectral reflectance and soil moisture content. The characteristic parameters of spectral water absorption arc extracted with the continuum-removal method, the features include the maximum absorption depth D, the absorption peak right area R-a, the absorption peak left arca L-a, the absorption peak total arca A, arca normalization maximum absorption depth D-Lambda, and symmetry S. With the correlation analysis of the features and soil moisture content, we use random forest method to classify the characteristic parameters of spectral water absorption, and obtain the importance of each parameter to soil moisture content. Multiple stepwise regression model is used to establish soil moisture content inversion model. The results arc as follows: D and A have the strongest correlation with the soil moisture content, the correlation between spectral absorption parameters in the band of 2200 nm or 1100 nm and SMC is better than that of 1900 nm band; the top five parameters that arc important for soil moisture content arc obtained, they arc D-2200, L-a2200, A(2200), D-1900 and R-a2200, respectively; the best prediction model of SMC is the multiple stepwise regression model with A(2200) and D-2200, the decision coefficient of the modelling set is 0.88, root mean square error of modeling set is 2.08, decision coefficient of the test set is 0.89, prediction root mean square error is 2.21, and the relative analysis error is 2.80. Random forest classification can obtain the important spectral water characteristic parameters which have great influence on soil moisture content, and it provides a new method for accurate and rapid estimation of soil moisture content in arid areas.
英文关键词spectroscopy soil moisture content random forest absorption characteristic parameter
类型Article
语种中文
收录类别ESCI
WOS记录号WOS:000549825800058
WOS类目Engineering, Electrical & Electronic ; Optics
WOS研究方向Engineering ; Optics
Scopus学科分类Xinjiang Univ, Key Lab Oasis Ecol, Minist Educ, Urumqi 830016, Xinjiang, Peoples R China.
来源机构新疆大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/333383
作者单位[Bao Qingling; Ding Jianli; Wang Jingzhe] Xinjiang Univ, Key Lab Wisdom City & Environm Modeling, Coll Resource & Environm Sci, Urumqi 830016, Xinjiang, Peoples R China; [Bao Qingling; Ding Jianli; Wang Jingzhe] Xinjiang Univ, Key Lab Oasis Ecol, Minist Educ, Urumqi 830016, Xinjiang, Peoples R China
推荐引用方式
GB/T 7714
Bao Qingling,Ding Jianli,Wang Jingzhe. Prediction of Soil Moisture Content by Selecting Spectral Characteristics Using Random Forest Method[J]. 新疆大学,2018,55(11).
APA Bao Qingling,Ding Jianli,&Wang Jingzhe.(2018).Prediction of Soil Moisture Content by Selecting Spectral Characteristics Using Random Forest Method.LASER & OPTOELECTRONICS PROGRESS,55(11).
MLA Bao Qingling,et al."Prediction of Soil Moisture Content by Selecting Spectral Characteristics Using Random Forest Method".LASER & OPTOELECTRONICS PROGRESS 55.11(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bao Qingling]的文章
[Ding Jianli]的文章
[Wang Jingzhe]的文章
百度学术
百度学术中相似的文章
[Bao Qingling]的文章
[Ding Jianli]的文章
[Wang Jingzhe]的文章
必应学术
必应学术中相似的文章
[Bao Qingling]的文章
[Ding Jianli]的文章
[Wang Jingzhe]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。