Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.22044/jme.2017.892 |
A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation | |
Sakizadeh, M.; Sattari, M. T.; Ghorbani, H. | |
通讯作者 | Sakizadeh, M |
来源期刊 | JOURNAL OF MINING AND ENVIRONMENT
![]() |
ISSN | 2251-8592 |
EISSN | 2251-8606 |
出版年 | 2017 |
卷号 | 8期号:3页码:373-391 |
英文摘要 | The soil samples were collected from 170 sampling stations in an arid area in Shahrood and Damghan, characterized by prevalence of mining activity. The levels of Co, Pb, Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl were recorded in each sampling location. A new method known as min/max autocorrelation factor (MAF) was applied for the first time in the environmental research works to de-correlate these elements before their geo-statistical simulation. The high cross-correlation among some elements, while poor spatial correlation among the others, could have made spectral decomposition of MAFs unstable, resulting in some negative eigenvalues, so it was decided to reduce the dimensionality of the original variables by Principal Component Analysis (PCA). The resultant 6 heavy metals (Cr, Mn, Cu, V, Ni, and Co) were converted to their respective MAFs followed by their geo-statistical simulation using Sequential Gaussian Simulation (SGS) independently. Examination of the cross-variograms of MAFs indicated that the resultant factors had been rigorously de-correlated, especially at zero lag and around. lag distance. Several validation checks including reproduction of variograms in data and normal score space, close matching between distribution of MAFs versus simulated realizations, and reproduction of descriptive statistics and data histograms all confirmed that the data values had been honored by this applied method. The results obtained indicated that this method could reproduce the data values as well as the spatial continuity of heavy metals (e.g. semivariograms) successfully. In addition, this technique is simpler and more computationally efficient than its equivalent sequential Gaussian co-simulation as fitting a linear model of co-regionalization (LMC) is not required in the data-driven MAF method. |
英文关键词 | Decorrelation Geo-Statistical Simulation Min/Max Autocorrelation Factor |
类型 | Article |
语种 | 英语 |
收录类别 | ESCI |
WOS记录号 | WOS:000419393000004 |
WOS关键词 | MIN/MAX AUTOCORRELATION FACTORS ; JOINT CONDITIONAL SIMULATION ; GEOSTATISTICAL ANALYSES ; AGRICULTURAL SOILS ; PYRITE OXIDATION ; GEOCHEMICAL DATA ; MULTIVARIATE ; CHINA ; IRAN ; CLASSIFICATION |
WOS类目 | Mining & Mineral Processing |
WOS研究方向 | Mining & Mineral Processing |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/332468 |
作者单位 | [Sakizadeh, M.] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Environm Sci, Tehran, Iran; [Sattari, M. T.] Univ Tabriz, Agr Fac, Dept Water Engn, Tabriz, Iran; [Ghorbani, H.] Shahrood Univ Technol, Sch Agr Engn, Shahrood, Iran |
推荐引用方式 GB/T 7714 | Sakizadeh, M.,Sattari, M. T.,Ghorbani, H.. A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation[J],2017,8(3):373-391. |
APA | Sakizadeh, M.,Sattari, M. T.,&Ghorbani, H..(2017).A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation.JOURNAL OF MINING AND ENVIRONMENT,8(3),373-391. |
MLA | Sakizadeh, M.,et al."A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation".JOURNAL OF MINING AND ENVIRONMENT 8.3(2017):373-391. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。