Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.35834/mjms/1513306828 |
GEOMETRY OF POLYNOMIALS WITH THREE ROOTS | |
Frayer, Christopher | |
通讯作者 | Frayer, C |
来源期刊 | MISSOURI JOURNAL OF MATHEMATICAL SCIENCES
![]() |
ISSN | 0899-6180 |
出版年 | 2017 |
卷号 | 29期号:2页码:161-175 |
英文摘要 | Given a complex-valued polynomial of the form p(z) = (z-1)(k) (z-r(1))(m) (z-r(2))(n) with broken vertical bar r(1)broken vertical bar = broken vertical bar r(2)broken vertical bar = 1; k,m,n is an element of N and m not equal n, where are the critical points? The Gauss-Lucas Theorem guarantees that the critical points of such a polynomial will lie within the unit disk. This paper further explores the location and structure of these critical points. Surprisingly, the unit disk contains two 'desert' regions in which critical points cannot occur, and each c inside the unit disk and outside of the desert regions is the critical point of exactly two such polynomials. |
英文关键词 | geometry of polynomials critical points Gauss-Lucas Theorem |
类型 | Article |
语种 | 英语 |
收录类别 | ESCI |
WOS记录号 | WOS:000418031400004 |
WOS类目 | Mathematics |
WOS研究方向 | Mathematics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/332411 |
作者单位 | [Frayer, Christopher] Univ Wisconsin Platteville, Dept Math, Platteville, WI 53818 USA |
推荐引用方式 GB/T 7714 | Frayer, Christopher. GEOMETRY OF POLYNOMIALS WITH THREE ROOTS[J],2017,29(2):161-175. |
APA | Frayer, Christopher.(2017).GEOMETRY OF POLYNOMIALS WITH THREE ROOTS.MISSOURI JOURNAL OF MATHEMATICAL SCIENCES,29(2),161-175. |
MLA | Frayer, Christopher."GEOMETRY OF POLYNOMIALS WITH THREE ROOTS".MISSOURI JOURNAL OF MATHEMATICAL SCIENCES 29.2(2017):161-175. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Frayer, Christopher]的文章 |
百度学术 |
百度学术中相似的文章 |
[Frayer, Christopher]的文章 |
必应学术 |
必应学术中相似的文章 |
[Frayer, Christopher]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。