Arid
DOI10.35834/mjms/1513306828
GEOMETRY OF POLYNOMIALS WITH THREE ROOTS
Frayer, Christopher
通讯作者Frayer, C
来源期刊MISSOURI JOURNAL OF MATHEMATICAL SCIENCES
ISSN0899-6180
出版年2017
卷号29期号:2页码:161-175
英文摘要Given a complex-valued polynomial of the form p(z) = (z-1)(k) (z-r(1))(m) (z-r(2))(n) with broken vertical bar r(1)broken vertical bar = broken vertical bar r(2)broken vertical bar = 1; k,m,n is an element of N and m not equal n, where are the critical points? The Gauss-Lucas Theorem guarantees that the critical points of such a polynomial will lie within the unit disk. This paper further explores the location and structure of these critical points. Surprisingly, the unit disk contains two 'desert' regions in which critical points cannot occur, and each c inside the unit disk and outside of the desert regions is the critical point of exactly two such polynomials.
英文关键词geometry of polynomials critical points Gauss-Lucas Theorem
类型Article
语种英语
收录类别ESCI
WOS记录号WOS:000418031400004
WOS类目Mathematics
WOS研究方向Mathematics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/332411
作者单位[Frayer, Christopher] Univ Wisconsin Platteville, Dept Math, Platteville, WI 53818 USA
推荐引用方式
GB/T 7714
Frayer, Christopher. GEOMETRY OF POLYNOMIALS WITH THREE ROOTS[J],2017,29(2):161-175.
APA Frayer, Christopher.(2017).GEOMETRY OF POLYNOMIALS WITH THREE ROOTS.MISSOURI JOURNAL OF MATHEMATICAL SCIENCES,29(2),161-175.
MLA Frayer, Christopher."GEOMETRY OF POLYNOMIALS WITH THREE ROOTS".MISSOURI JOURNAL OF MATHEMATICAL SCIENCES 29.2(2017):161-175.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Frayer, Christopher]的文章
百度学术
百度学术中相似的文章
[Frayer, Christopher]的文章
必应学术
必应学术中相似的文章
[Frayer, Christopher]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。