Arid
An Architecture to Classify Desertification Areas using Hyperspectral Images and the Optimum Path Forest Algorithm
Macedo, Marcia R. O. B. C.; Times, Valeria C.; Cavalcanti, George D. C.; Kohlman Rabbani, Emilia Rahnemay
通讯作者Macedo, MROBC
来源期刊ELECTRONIC JOURNAL OF GEOTECHNICAL ENGINEERING
ISSN1089-3032
出版年2016
卷号21期号:5页码:1881-1895
英文摘要The desertification is the process of degradation of the lands of arid regions, semiarid and dry sub humid, resulting of different factors, among them, the climatic variation and human activity. Inappropriate land use and soil mismanagement are the most important anthropic causes of desertification. Traditionally, multispectral sensors with a small number of bands have been used in remote sensing to discriminate most classes that occur in natural scenes such as vegetation, water bodies, soils and urban areas. But that is not sufficient when we try to discriminate many ground cover classes that do not have simple, uniquely identifiable reflectance spectra. The progress in remote sensing technology over the recent years has lead to the launch of hyperspectral remote sensing systems. The present study is exploring the potential of Hyperion hyperspectral imagery combined with Optimum Forest Path (OPF) algorithm for supervised classification of areas affected by desertification process and compares the efficacy between the OPF and SVM classifiers when applied to these areas. Validation of the land cover thematic maps was performed based on the confusion matrix analysis using for consistency the same set of validation points. Both classifiers produced generally reasonable results with the OPF however significantly outperforming the SVM in overall classification accuracy. The higher classification accuracy by OPF was attributed principally to the ability to identify a better distinction between the regions of degraded areas (DA, DOC and DP) and preserved areas (PGP and PDP).
英文关键词remote sensing image processing desertification
类型Article
语种英语
收录类别ESCI
WOS记录号WOS:000459504800015
WOS类目Engineering, Geological
WOS研究方向Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/332048
作者单位[Macedo, Marcia R. O. B. C.; Kohlman Rabbani, Emilia Rahnemay] Univ Pernambuco, Polytech Sch Pernambuco, Recife, PE, Brazil; [Times, Valeria C.; Cavalcanti, George D. C.] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
推荐引用方式
GB/T 7714
Macedo, Marcia R. O. B. C.,Times, Valeria C.,Cavalcanti, George D. C.,et al. An Architecture to Classify Desertification Areas using Hyperspectral Images and the Optimum Path Forest Algorithm[J],2016,21(5):1881-1895.
APA Macedo, Marcia R. O. B. C.,Times, Valeria C.,Cavalcanti, George D. C.,&Kohlman Rabbani, Emilia Rahnemay.(2016).An Architecture to Classify Desertification Areas using Hyperspectral Images and the Optimum Path Forest Algorithm.ELECTRONIC JOURNAL OF GEOTECHNICAL ENGINEERING,21(5),1881-1895.
MLA Macedo, Marcia R. O. B. C.,et al."An Architecture to Classify Desertification Areas using Hyperspectral Images and the Optimum Path Forest Algorithm".ELECTRONIC JOURNAL OF GEOTECHNICAL ENGINEERING 21.5(2016):1881-1895.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Macedo, Marcia R. O. B. C.]的文章
[Times, Valeria C.]的文章
[Cavalcanti, George D. C.]的文章
百度学术
百度学术中相似的文章
[Macedo, Marcia R. O. B. C.]的文章
[Times, Valeria C.]的文章
[Cavalcanti, George D. C.]的文章
必应学术
必应学术中相似的文章
[Macedo, Marcia R. O. B. C.]的文章
[Times, Valeria C.]的文章
[Cavalcanti, George D. C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。