Arid
DOI10.3724/SP.J.1226.2016.00263
Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang
Wang, JunZhan; Qu, JianJun; Zhang, WeiMin; Zhang, KeCun
通讯作者Wang, JZ
来源期刊SCIENCES IN COLD AND ARID REGIONS
ISSN1674-3822
出版年2016
卷号8期号:3页码:263-267
英文摘要Classification is an important process in interpretation of synthetic aperture radar (SAR) imagery. As an advanced instrument for remote sensing, the polarimetric SAR has been applied widely in many fields. The main aim of this paper is to explore the ability of the full-polarization SAR data in classification. The study area is a part of Dunhuang, Gansu Province, China. An L-band full-polarization image of Dunhuang which includes quad-polarization modes was acquired by the ALOS-PALSAR (Advanced Land Observing Satellite-the Phased Array type L-band Synthetic Aperture Radar). Firstly, new characteristic information was extracted by the difference operation, ratio operation, and principal component transform based on the full-polarization (HH, HV or VH, VV) modes SAR data. Then the single-, dual-, full-polarization SAR data and new SAR characteristic information were used to analyze quantitatively the classification accuracy based on the Support Vector Machines (SVM). The results show that classification overall accuracy of single-polarization SAR data is poor, and the highest is 56.53% of VV polarization. The classification overall accuracy of dual-polarization SAR is much better than single-polarization, the highest is 74.77% of HV & VV polarization data. The classification overall accuracy of full-polarization SAR is 80.21%, adding the difference characteristic information, ratio characteristic information and the first principal component (PC1) respectively, the overall accuracy increased by 3.09%, 3.38%, 4.14% respectively. When the full-polarization SAR data in combination with the all characteristic information, the classification overall accuracy reached to 91.01%. The full-polarization SAR data in combination with the band math characteristic information or the PC1 can greatly improve classification accuracy.
英文关键词full-polarization PALSAR classification the Support Vector Machines (SVM)
类型Article
语种英语
收录类别ESCI
WOS记录号WOS:000391630900009
WOS关键词POLARIMETRIC SAR IMAGES ; DECOMPOSITION
WOS类目Geography, Physical
WOS研究方向Physical Geography
来源机构中国科学院西北生态环境资源研究院
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/331737
作者单位[Wang, JunZhan; Qu, JianJun; Zhang, WeiMin; Zhang, KeCun] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Dunhuang Gobi & Desert Ecol & Environm Res Stn, Lanzhou 730000, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Wang, JunZhan,Qu, JianJun,Zhang, WeiMin,et al. Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang[J]. 中国科学院西北生态环境资源研究院,2016,8(3):263-267.
APA Wang, JunZhan,Qu, JianJun,Zhang, WeiMin,&Zhang, KeCun.(2016).Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang.SCIENCES IN COLD AND ARID REGIONS,8(3),263-267.
MLA Wang, JunZhan,et al."Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang".SCIENCES IN COLD AND ARID REGIONS 8.3(2016):263-267.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, JunZhan]的文章
[Qu, JianJun]的文章
[Zhang, WeiMin]的文章
百度学术
百度学术中相似的文章
[Wang, JunZhan]的文章
[Qu, JianJun]的文章
[Zhang, WeiMin]的文章
必应学术
必应学术中相似的文章
[Wang, JunZhan]的文章
[Qu, JianJun]的文章
[Zhang, WeiMin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。