Arid
DOI10.1007/s40710-015-0066-6
Generalized Quadratic Synaptic Neural Networks for ETo Modeling
Adamala, Sirisha; Raghuwanshi, N. S.; Mishra, Ashok
通讯作者Adamala, S
来源期刊ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL
ISSN2198-7491
EISSN2198-7505
出版年2015
卷号2期号:2页码:309-329
英文摘要This study aims at developing generalized quadratic synaptic neural (GQSN) based reference evapotranspiration (ETo) models corresponding to the Hargreaves (HG) method. The GQSN models were developed using pooled climate data from different locations under four agro-ecological regions (semi-arid, arid, sub-humid, and humid) in India. The inputs for the development of GQSN models include daily climate data of minimum and maximum air temperatures (T-min and T-max), extra terrestrial radiation (R-a) and altitude (alt) with different combinations, and the target consists of the FAO-56 Penman Monteith (FAO-56 PM) ETo. Comparisons of developed GQSN models with the generalized linear synaptic neural (GLSN) models were also made. Based on the comparisons, it is concluded that the GQSN and GLSN models performed better than the HG and calibrated HG (HG-C) methods. Comparison of GQSN and GLSN models, reveal that the GQSN models performed better than the GLSN models for all regions. Both GLSN and GQSN models with the inputs of T-min and T-max and R-a performed better compared to other combinations. Further, GLSN and GQSN models were applied to locations of model development and model testing to test the generalizing capability. The testing results suggest that the GQSN and GLSN models with the inputs of T-min, T-max and R-a have a good generalizing capability for all regions.
英文关键词Neural networks Synaptic operation ANN generalization Evapotranspiration
类型Article
语种英语
开放获取类型Bronze
收录类别ESCI
WOS记录号WOS:000429896200003
WOS关键词REFERENCE EVAPOTRANSPIRATION ; TEMPERATURE ; ANN
WOS类目Engineering, Environmental
WOS研究方向Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/331382
作者单位[Adamala, Sirisha; Raghuwanshi, N. S.; Mishra, Ashok] Indian Inst Technol, Agr & Food Engn Dept, Kharagpur 721302, W Bengal, India
推荐引用方式
GB/T 7714
Adamala, Sirisha,Raghuwanshi, N. S.,Mishra, Ashok. Generalized Quadratic Synaptic Neural Networks for ETo Modeling[J],2015,2(2):309-329.
APA Adamala, Sirisha,Raghuwanshi, N. S.,&Mishra, Ashok.(2015).Generalized Quadratic Synaptic Neural Networks for ETo Modeling.ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL,2(2),309-329.
MLA Adamala, Sirisha,et al."Generalized Quadratic Synaptic Neural Networks for ETo Modeling".ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL 2.2(2015):309-329.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Adamala, Sirisha]的文章
[Raghuwanshi, N. S.]的文章
[Mishra, Ashok]的文章
百度学术
百度学术中相似的文章
[Adamala, Sirisha]的文章
[Raghuwanshi, N. S.]的文章
[Mishra, Ashok]的文章
必应学术
必应学术中相似的文章
[Adamala, Sirisha]的文章
[Raghuwanshi, N. S.]的文章
[Mishra, Ashok]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。