Arid
DOI10.1080/10549811.2020.1754241
Estimating Tree Volume of Dry Tropical Forest in the Brazilian Semi-Arid Region: A Comparison Between Regression and Artificial Neural Networks
de Lima, Robson B.; Caraciolo Ferreira, Rinaldo L.; Aleixo da Silva, Jose A.; Alves Junior, Francisco T.; de Oliveira, Cinthia P.
通讯作者de Lima, RB
来源期刊JOURNAL OF SUSTAINABLE FORESTRY
ISSN1054-9811
EISSN1540-756X
出版年2020-05
英文摘要The dry tropical forests of the Brazilian semi-arid region are a key component in the sustainable production of coal and firewood for power generation, although their estimates of volume and wood stock depend almost exclusively on equations adjusted from other semi-arid regions or form factor for data of managed species. Therefore, a systematic evaluation of new methodologies such as artificial neural networks and regression models is justifiable for the locale, since it aims to select a tool that reports reliable predictions of volume and that is low cost in the forest management of the region. Our main results show that less reliable estimates of trunk and branch volumes are obtained by simple input models and perceptron networks. The Schumacher-Hall linearized equation provides reliable estimates of volume, although the Multilayer-Perceptron neural networks indicate estimates, which are no less biased. Our results suggest that using volumetric equations to predict trunk and tree branch volume in the Brazilian semi-arid region is still more statistically advantageous, although the use of ANNs is not ruled out. This shows that there are obviously complex relationships between dependent and independent biological factors and that volumetric models are able to better explain such relationships.
英文关键词Caatinga domain regression analysis artificial neural networks forest management
类型Article ; Early Access
语种英语
收录类别SCI-E
WOS记录号WOS:000573698400001
WOS关键词PREDICTING ABOVEGROUND BIOMASS ; ALLOMETRIC EQUATIONS ; INDIVIDUAL TREES ; STAND VOLUME ; STEM VOLUME ; LIDAR ; MODEL ; AREA ; VEGETATION ; DIAMETER
WOS类目Forestry
WOS研究方向Forestry
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/328286
作者单位[de Lima, Robson B.; Alves Junior, Francisco T.; de Oliveira, Cinthia P.] Univ Estado Amapa, Lab Manejo Florestal, Rua Presidente Vargas 450, BR-68901262 Centro, Macapa, Brazil; [Caraciolo Ferreira, Rinaldo L.; Aleixo da Silva, Jose A.; de Oliveira, Cinthia P.] Univ Fed Rural Pernambuco, Lab Manejo Florestas Nat Jose Serafim Feitosa Fer, Recife, PE, Brazil
推荐引用方式
GB/T 7714
de Lima, Robson B.,Caraciolo Ferreira, Rinaldo L.,Aleixo da Silva, Jose A.,et al. Estimating Tree Volume of Dry Tropical Forest in the Brazilian Semi-Arid Region: A Comparison Between Regression and Artificial Neural Networks[J],2020.
APA de Lima, Robson B.,Caraciolo Ferreira, Rinaldo L.,Aleixo da Silva, Jose A.,Alves Junior, Francisco T.,&de Oliveira, Cinthia P..(2020).Estimating Tree Volume of Dry Tropical Forest in the Brazilian Semi-Arid Region: A Comparison Between Regression and Artificial Neural Networks.JOURNAL OF SUSTAINABLE FORESTRY.
MLA de Lima, Robson B.,et al."Estimating Tree Volume of Dry Tropical Forest in the Brazilian Semi-Arid Region: A Comparison Between Regression and Artificial Neural Networks".JOURNAL OF SUSTAINABLE FORESTRY (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[de Lima, Robson B.]的文章
[Caraciolo Ferreira, Rinaldo L.]的文章
[Aleixo da Silva, Jose A.]的文章
百度学术
百度学术中相似的文章
[de Lima, Robson B.]的文章
[Caraciolo Ferreira, Rinaldo L.]的文章
[Aleixo da Silva, Jose A.]的文章
必应学术
必应学术中相似的文章
[de Lima, Robson B.]的文章
[Caraciolo Ferreira, Rinaldo L.]的文章
[Aleixo da Silva, Jose A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。