Arid
DOI10.1109/ACCESS.2020.3042699
Towards an Machine Learning-Based Edge Computing Oriented Monitoring System for the Desert Border Surveillance Use Case
Bellazi, Khalifa M.; Marino, Rodrigo; Lanza-Gutierrez, Jose M.; Riesgo, Teresa
通讯作者Bellazi, KM
来源期刊IEEE ACCESS
ISSN2169-3536
出版年2020
卷号8页码:218304-218322
英文摘要The design of border surveillance systems is critical for most countries in the world, having each border specific needs. This paper focuses on an Internet of Things oriented surveillance system to be deployed in the Sahara Desert, which is composed of many unattended fixed platforms, where the nodes in the edge have a Forward Looking InfraRed (FLIR) camera for field monitoring. To reduce communications and decentralise the processing, IR images should be fully computed on the edge by an Automated Target Recognition (ATR) algorithm, tracking and identifying targets of interest. As edge nodes are constrained in energy and computing capacity, this work proposes two ATR systems to be executed in low-power microprocessors. Both proposals are based on using Bag-of-Features for feature extraction and a supervised algorithm for classification, both differing in segmenting the InfraRed image in regions of interest or working directly with the whole image. Both proposals are successfully applied to infer about a dataset generated to this end, getting a trade-off between computing cost and detection capacity. As a result, the authors obtained a detection capacity of up to 97% and a frame rate of up to 5.71 and 59.17, running locally on the edge device and the workstation, respectively.
英文关键词Automatic target recognition approximate computing bag of features border surveillance classification edge computing Internet of Things machine learning Sahara desert
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000597790900001
WOS关键词RECOGNITION ; FEATURES ; INTERNET
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/327887
作者单位[Bellazi, Khalifa M.; Marino, Rodrigo; Riesgo, Teresa] Univ Politecn Madrid, Ctr Elect Ind, Escuela Tecn Super Ingn Ind, Madrid 28040, Spain; [Lanza-Gutierrez, Jose M.] Univ Alcala De Henares, Dept Comp Sci, Alcala De Henares 28871, Spain
推荐引用方式
GB/T 7714
Bellazi, Khalifa M.,Marino, Rodrigo,Lanza-Gutierrez, Jose M.,et al. Towards an Machine Learning-Based Edge Computing Oriented Monitoring System for the Desert Border Surveillance Use Case[J],2020,8:218304-218322.
APA Bellazi, Khalifa M.,Marino, Rodrigo,Lanza-Gutierrez, Jose M.,&Riesgo, Teresa.(2020).Towards an Machine Learning-Based Edge Computing Oriented Monitoring System for the Desert Border Surveillance Use Case.IEEE ACCESS,8,218304-218322.
MLA Bellazi, Khalifa M.,et al."Towards an Machine Learning-Based Edge Computing Oriented Monitoring System for the Desert Border Surveillance Use Case".IEEE ACCESS 8(2020):218304-218322.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bellazi, Khalifa M.]的文章
[Marino, Rodrigo]的文章
[Lanza-Gutierrez, Jose M.]的文章
百度学术
百度学术中相似的文章
[Bellazi, Khalifa M.]的文章
[Marino, Rodrigo]的文章
[Lanza-Gutierrez, Jose M.]的文章
必应学术
必应学术中相似的文章
[Bellazi, Khalifa M.]的文章
[Marino, Rodrigo]的文章
[Lanza-Gutierrez, Jose M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。