Arid
DOI10.1029/2020EA001221
Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark-Target Algorithm: 1. Dust Detection
Zhou, Yaping; Levy, Robert C.; Remer, Lorraine A.; Mattoo, Shana; Shi, Yingxi; Wang, Chenxi
通讯作者Zhou, YP
来源期刊EARTH AND SPACE SCIENCE
EISSN2333-5084
出版年2020
卷号7期号:10
英文摘要To prepare for implementation of a new aerosol retrieval specifically designed for dust aerosol over ocean in the operational Dark-Target (DT) algorithms for the Moderate-resolution Imaging Spectrometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite sensors, we focus on the challenge of detecting dust. We first survey the literature on existing dust detection algorithms and then develop an innovative algorithm that combines near-UV (deep blue), visible, and thermal infrared (TIR) wavelength spectral tests. The new detection algorithm is applied to Terra and Aqua MODIS granules and compared with other dust detection possibilities from existing MODIS products. Quantitative evaluation of the new dust detection algorithm is conducted using both a collocated AERONET-MODIS data set and collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-MODIS data set. From comparison with both AERONET and CALIOP measurements, we estimate the new dust detection algorithm detects about 30% of weakly dusty pixels and more than 80% of heavily dusty pixels, with false detections in the range of 1-2%. The very low false detection rate is particularly noteworthy in comparison with existing literature. Compared with the dust flag currently available as part of the MODIS cloud mask product (MOD35/MYD35), and dust classification based on commonly used thresholds with aerosol optical depth (AOD) and Angstrom exponent (AE), the new dust detection algorithm finds more dusty pixels and fewer false detections. Plain Language Summary The Dark-Target (DT) aerosol retrieval is applied to measurements from the Moderate-resolution Imaging Spectrometer (MODIS) on the Terra and Aqua satellites to retrieve spectral aerosol optical depth (AOD) over land and ocean. The algorithm generally provides high-quality retrievals within specified error bar. However, the DT-Ocean algorithm tends to provide biased retrievals of AOD, Angstrom exponent (AE), and fine mode fraction (FMF) for scenes containing dust aerosol of African or Asian origin. These biases are scattering angle dependent, which suggests errors in the assumed optical properties and phase function from the spherical dust models used. Therefore, we aim to improve the DT retrieval of dust over ocean with a two-step strategy. Here in Part 1, we describe Step 1 in which we develop an innovative dust detection algorithm that combines deep-blue, visible, shortwave infrared, and thermal infrared wavelength spectral tests that are based on a survey of existing dust detection algorithms. Step 2 is described in Part 2, where we develop new nonspherical dust models and apply it to identified heavy dust pixels. Combing dust detection and nonspherical dust model has led to significant improvements in retrieved AOD, AE, and FMF in dust regions.
英文关键词Dust Aerosol retrieval dust detection MODIS VIIRS remote sensing
类型Article
语种英语
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000586332600026
WOS关键词MINERAL DUST ; OPTICAL-PROPERTIES ; SATELLITE DATA ; SOUTH-AMERICA ; DESERT DUST ; TRANSPORT ; VARIABILITY ; WATER ; CLASSIFICATION ; PRODUCTS
WOS类目Astronomy & Astrophysics ; Geosciences, Multidisciplinary
WOS研究方向Astronomy & Astrophysics ; Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/327341
作者单位[Zhou, Yaping; Remer, Lorraine A.; Shi, Yingxi; Wang, Chenxi] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA; [Zhou, Yaping; Levy, Robert C.; Mattoo, Shana; Shi, Yingxi; Wang, Chenxi] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA; [Mattoo, Shana] Sci Syst & Applicat Inc SSAI, Lanham, MD USA
推荐引用方式
GB/T 7714
Zhou, Yaping,Levy, Robert C.,Remer, Lorraine A.,et al. Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark-Target Algorithm: 1. Dust Detection[J],2020,7(10).
APA Zhou, Yaping,Levy, Robert C.,Remer, Lorraine A.,Mattoo, Shana,Shi, Yingxi,&Wang, Chenxi.(2020).Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark-Target Algorithm: 1. Dust Detection.EARTH AND SPACE SCIENCE,7(10).
MLA Zhou, Yaping,et al."Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark-Target Algorithm: 1. Dust Detection".EARTH AND SPACE SCIENCE 7.10(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yaping]的文章
[Levy, Robert C.]的文章
[Remer, Lorraine A.]的文章
百度学术
百度学术中相似的文章
[Zhou, Yaping]的文章
[Levy, Robert C.]的文章
[Remer, Lorraine A.]的文章
必应学术
必应学术中相似的文章
[Zhou, Yaping]的文章
[Levy, Robert C.]的文章
[Remer, Lorraine A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。