Arid
DOI10.1071/RJ19081
Improvement of mapping vegetation cover for arid and semiarid areas using a local nonlinear modelling method and landsat images
Sun, H.; Wang, Q.; Wang, G. X.; Luo, P.; Jiang, F. G.
通讯作者Wang, GX
来源期刊RANGELAND JOURNAL
ISSN1036-9872
EISSN1834-7541
出版年2020
卷号42期号:3页码:161-169
英文摘要Accurately estimating and mapping vegetation cover for monitoring land degradation and desertification of arid and semiarid areas using remotely sensed images is promising but challenging in remote, sparsely vegetated and large areas. In this study, a novel method - geographically weighted logistic regression (GWLR - integrating geographically weighted regression (GWR) and a logistic model) was proposed to improve vegetation cover mapping of Kangbao County, Hebei of China using Landsat 8 image and field data. Additionally, a new method to determine the bandwidth of GWLR is presented. Using cross-validation, GWLR was compared with a globally linear stepwise regression (LSR), a local linear modelling method GWR and a nonparametric method, k-nearest neighbours (kNN) with varying numbers of nearest plots. Results demonstrated (1) the red and near infrared relevant band ratios and vegetation indices significantly improved mapping; (2) the GWLR, GWR and kNN methods led to more accurate predictions than LSR; (3) GWLR reduced overestimations and underestimations compared with LSR, kNN and GWR, and also eliminated negative and very large estimates caused by GWR and LSR; and (4) The maximum distance of spatial autocorrelation could be used to determine the bandwidth for GWLR. Overall, GWLR proved more promising for mapping vegetation cover of arid and semiarid areas.
英文关键词accurate estimation desertification geographically weighted logistic regression Kangbao County land degradation northern China remote sensing spatial variability vegetation cover
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000582762700001
WOS关键词DESERTIFICATION ; REGRESSION ; RANGELAND ; INDEX
WOS类目Ecology
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/327158
作者单位[Sun, H.; Jiang, F. G.] Cent South Univ Forestry & Technol, Res Ctr Forestry Remote Sensing & Informat Engn, Changsha 410004, Hunan, Peoples R China; [Sun, H.; Jiang, F. G.] Key Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China; [Sun, H.; Jiang, F. G.] Key Lab Natl Forestry & Grassland Adm Forest Reso, Changsha 410004, Peoples R China; [Wang, Q.; Wang, G. X.] Southern Illinois Univ, Dept Geog & Environm Resources, Carbondale, IL 62901 USA; [Luo, P.] Chinese Acad Forestry, Res Inst Forest Resources Informat Tech, Beijing 100091, Peoples R China
推荐引用方式
GB/T 7714
Sun, H.,Wang, Q.,Wang, G. X.,et al. Improvement of mapping vegetation cover for arid and semiarid areas using a local nonlinear modelling method and landsat images[J],2020,42(3):161-169.
APA Sun, H.,Wang, Q.,Wang, G. X.,Luo, P.,&Jiang, F. G..(2020).Improvement of mapping vegetation cover for arid and semiarid areas using a local nonlinear modelling method and landsat images.RANGELAND JOURNAL,42(3),161-169.
MLA Sun, H.,et al."Improvement of mapping vegetation cover for arid and semiarid areas using a local nonlinear modelling method and landsat images".RANGELAND JOURNAL 42.3(2020):161-169.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, H.]的文章
[Wang, Q.]的文章
[Wang, G. X.]的文章
百度学术
百度学术中相似的文章
[Sun, H.]的文章
[Wang, Q.]的文章
[Wang, G. X.]的文章
必应学术
必应学术中相似的文章
[Sun, H.]的文章
[Wang, Q.]的文章
[Wang, G. X.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。