Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs12183099 |
A Multi Linear Regression Model to Derive Dust PM10 in the Sahel Using AERONET Aerosol Optical Depth and CALIOP Aerosol Layer Products | |
Leon, Jean-Francois; Martiny, Nadege; Merlet, Sebastien | |
通讯作者 | Leon, JF |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2020 |
卷号 | 12期号:18 |
英文摘要 | Due to a limited number of monitoring stations in Western Africa, the impact of mineral dust on PM10 surface concentrations is still poorly known. We propose a new method to retrieve PM10 dust surface concentrations from sun photometer aerosol optical depth (AOD) and CALIPSO/CALIOP Level 2 aerosol layer products. The method is based on a multi linear regression model that is trained using co-located PM10, AERONET and CALIOP observations at 3 different locations in the Sahel. In addition to the sun photometer AOD, the regression model uses the CALIOP-derived base and top altitude of the lowermost dust layer, its AOD, the columnar total and columnar dust AOD. Due to the low revisit period of the CALIPSO satellite, the monthly mean annual cycles of the parameters are used as predictor variables rather than instantaneous observations. The regression model improves the correlation coefficient between monthly mean PM10 and AOD from 0.15 (AERONET AOD only) to 0.75 (AERONET AOD and CALIOP parameters). The respective high and low PM10 concentration during the winter dry season and summer season are well produced. Days with surface PM10 above 100 mu g/m(3) are better identified when using the CALIOP parameters in the multi linear regression model. The number of true positives (actual and predicted concentrations above the threshold) is increased and leads to an improvement in the classification sensitivity (recall) by a factor 1.8. Our methodology can be extrapolated to the whole Sahel area provided that satellite derived AOD maps are used in order to create a new dataset on population exposure to dust events in this area. |
英文关键词 | mineral dust Africa lidar PM10 |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold, Green Submitted |
收录类别 | SCI-E |
WOS记录号 | WOS:000581704100001 |
WOS关键词 | MINERAL DUST ; SAHARAN DUST ; VERTICAL-DISTRIBUTION ; MENINGITIS INCIDENCE ; AFRICAN DUST ; DESERT DUST ; GLOBAL DUST ; LIDAR ; CALIPSO ; CLOUD |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/327069 |
作者单位 | [Leon, Jean-Francois] Univ Paul Sabatier, Lab Aerol, CNRS, F-31400 Toulouse, France; [Martiny, Nadege; Merlet, Sebastien] Univ Bourgogne, Biogeosci, Ctr Rech Climatol, CNRS, F-2100 Dijon, France |
推荐引用方式 GB/T 7714 | Leon, Jean-Francois,Martiny, Nadege,Merlet, Sebastien. A Multi Linear Regression Model to Derive Dust PM10 in the Sahel Using AERONET Aerosol Optical Depth and CALIOP Aerosol Layer Products[J],2020,12(18). |
APA | Leon, Jean-Francois,Martiny, Nadege,&Merlet, Sebastien.(2020).A Multi Linear Regression Model to Derive Dust PM10 in the Sahel Using AERONET Aerosol Optical Depth and CALIOP Aerosol Layer Products.REMOTE SENSING,12(18). |
MLA | Leon, Jean-Francois,et al."A Multi Linear Regression Model to Derive Dust PM10 in the Sahel Using AERONET Aerosol Optical Depth and CALIOP Aerosol Layer Products".REMOTE SENSING 12.18(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。