Arid
DOI10.3390/w12092478
Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models
Dantas, Leydson G.; dos Santos, Carlos A. C.; de Olinda, Ricardo A.; de Brito, Jose I. B.; Santos, Celso A. G.; Martins, Eduardo S. P. R.; de Oliveira, Gabriel; Brunsell, Nathaniel A.
通讯作者dos Santos, CAC
来源期刊WATER
EISSN2073-4441
出版年2020
卷号12期号:9
英文摘要The state of Paraiba is part of the semi-arid region of Brazil, where severe droughts have occurred in recent years, resulting in significant socio-economic losses associated with climate variability. Thus, understanding to what extent precipitation can be influenced by sea surface temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up an early warning system, the first pillar in drought management. In this study, Generalized Additive Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent influence of tropical SST patterns in Paraiba rainfall, the tropical Atlantic Ocean impacting the rainfall distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive capability during summer and southern autumn in Paraiba, highlighting the JFM (January, February and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May and June) trimesters as those with the highest predictive potential. The methodology demonstrates the ability to be integrated with regional forecasting models (ensemble). Such information has the potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at the sustainable management of water resources and resilience to climate risk.
英文关键词non-stationary water resources SST indices Northeast of Brazil zero adjusted Gamma distribution (ZAGA)
类型Article
语种英语
开放获取类型gold
收录类别SCI-E ; SSCI
WOS记录号WOS:000580705800001
WOS关键词SEASONAL DROUGHT PREDICTION ; FLOOD FREQUENCY-ANALYSIS ; MANN-KENDALL TEST ; ARTIFICIAL-INTELLIGENCE ; EXTREME PRECIPITATION ; SERIAL-CORRELATION ; RESERVOIR INDEXES ; ATLANTIC SST ; CLIMATE ; STREAMFLOW
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/326993
作者单位[Dantas, Leydson G.] Natl Inst Space Res, Ctr Weather Forecasting & Climate Studies, BR-12630000 Cachoeira Paulista, SP, Brazil; [dos Santos, Carlos A. C.; de Brito, Jose I. B.] Univ Fed Campina Grande, Acad Unit Atmospher Sci, Ctr Technol & Nat Resources, BR-58109970 Campina Grande, Paraiba, Brazil; [de Olinda, Ricardo A.] Paraiba State Univ, Dept Stat, BR-58429500 Campina Grande, Paraiba, Brazil; [Santos, Celso A. G.] Univ Fed Paraiba, Dept Civil & Environm Engn, BR-58051900 Joao Pessoa, Paraiba, Brazil; [Martins, Eduardo S. P. R.] Res Inst Meteorol & Water Resources, BR-60115221 Fortaleza, Ceara, Brazil; [de Oliveira, Gabriel] Univ Toronto, Dept Geog & Planning, Toronto, ON M5S 3G3, Canada; [Brunsell, Nathaniel A.] Univ Kansas, Dept Geog & Atmospher Sci, Lawrence, KS 66045 USA
推荐引用方式
GB/T 7714
Dantas, Leydson G.,dos Santos, Carlos A. C.,de Olinda, Ricardo A.,et al. Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models[J],2020,12(9).
APA Dantas, Leydson G..,dos Santos, Carlos A. C..,de Olinda, Ricardo A..,de Brito, Jose I. B..,Santos, Celso A. G..,...&Brunsell, Nathaniel A..(2020).Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models.WATER,12(9).
MLA Dantas, Leydson G.,et al."Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models".WATER 12.9(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dantas, Leydson G.]的文章
[dos Santos, Carlos A. C.]的文章
[de Olinda, Ricardo A.]的文章
百度学术
百度学术中相似的文章
[Dantas, Leydson G.]的文章
[dos Santos, Carlos A. C.]的文章
[de Olinda, Ricardo A.]的文章
必应学术
必应学术中相似的文章
[Dantas, Leydson G.]的文章
[dos Santos, Carlos A. C.]的文章
[de Olinda, Ricardo A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。