Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/w12092478 |
Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models | |
Dantas, Leydson G.; dos Santos, Carlos A. C.; de Olinda, Ricardo A.; de Brito, Jose I. B.; Santos, Celso A. G.; Martins, Eduardo S. P. R.; de Oliveira, Gabriel; Brunsell, Nathaniel A. | |
通讯作者 | dos Santos, CAC |
来源期刊 | WATER
![]() |
EISSN | 2073-4441 |
出版年 | 2020 |
卷号 | 12期号:9 |
英文摘要 | The state of Paraiba is part of the semi-arid region of Brazil, where severe droughts have occurred in recent years, resulting in significant socio-economic losses associated with climate variability. Thus, understanding to what extent precipitation can be influenced by sea surface temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up an early warning system, the first pillar in drought management. In this study, Generalized Additive Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent influence of tropical SST patterns in Paraiba rainfall, the tropical Atlantic Ocean impacting the rainfall distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive capability during summer and southern autumn in Paraiba, highlighting the JFM (January, February and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May and June) trimesters as those with the highest predictive potential. The methodology demonstrates the ability to be integrated with regional forecasting models (ensemble). Such information has the potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at the sustainable management of water resources and resilience to climate risk. |
英文关键词 | non-stationary water resources SST indices Northeast of Brazil zero adjusted Gamma distribution (ZAGA) |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E ; SSCI |
WOS记录号 | WOS:000580705800001 |
WOS关键词 | SEASONAL DROUGHT PREDICTION ; FLOOD FREQUENCY-ANALYSIS ; MANN-KENDALL TEST ; ARTIFICIAL-INTELLIGENCE ; EXTREME PRECIPITATION ; SERIAL-CORRELATION ; RESERVOIR INDEXES ; ATLANTIC SST ; CLIMATE ; STREAMFLOW |
WOS类目 | Environmental Sciences ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/326993 |
作者单位 | [Dantas, Leydson G.] Natl Inst Space Res, Ctr Weather Forecasting & Climate Studies, BR-12630000 Cachoeira Paulista, SP, Brazil; [dos Santos, Carlos A. C.; de Brito, Jose I. B.] Univ Fed Campina Grande, Acad Unit Atmospher Sci, Ctr Technol & Nat Resources, BR-58109970 Campina Grande, Paraiba, Brazil; [de Olinda, Ricardo A.] Paraiba State Univ, Dept Stat, BR-58429500 Campina Grande, Paraiba, Brazil; [Santos, Celso A. G.] Univ Fed Paraiba, Dept Civil & Environm Engn, BR-58051900 Joao Pessoa, Paraiba, Brazil; [Martins, Eduardo S. P. R.] Res Inst Meteorol & Water Resources, BR-60115221 Fortaleza, Ceara, Brazil; [de Oliveira, Gabriel] Univ Toronto, Dept Geog & Planning, Toronto, ON M5S 3G3, Canada; [Brunsell, Nathaniel A.] Univ Kansas, Dept Geog & Atmospher Sci, Lawrence, KS 66045 USA |
推荐引用方式 GB/T 7714 | Dantas, Leydson G.,dos Santos, Carlos A. C.,de Olinda, Ricardo A.,et al. Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models[J],2020,12(9). |
APA | Dantas, Leydson G..,dos Santos, Carlos A. C..,de Olinda, Ricardo A..,de Brito, Jose I. B..,Santos, Celso A. G..,...&Brunsell, Nathaniel A..(2020).Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models.WATER,12(9). |
MLA | Dantas, Leydson G.,et al."Rainfall Prediction in the State of Paraiba, Northeastern Brazil Using Generalized Additive Models".WATER 12.9(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。