Arid
DOI10.5802/crgeos.3
Use of the shearlet energy entropy and of the support vector machine classifier to process weak microseismic and desert seismic signals
Li, Yue; Fan, Shiyu; Zhang, Chao; Yang, Baojun
通讯作者Zhang, C
来源期刊COMPTES RENDUS GEOSCIENCE
ISSN1631-0713
EISSN1778-7025
出版年2020
卷号352期号:1页码:103-113
英文摘要Low-amplitude signal detection is a key procedure in borehole microseismic and desert seismic exploration. Usually, signals are difficult to detect due to their low amplitude and noise contamination. To solve this problem, we propose a method combining shearlet energy entropy with a support vector machine (SVM) to detect low-amplitude signals. In the proposed method, the signal feature is extracted using shearlet energy entropy. The signal is more sparsely represented in the shearlet domain because of the multi-scale and multi-direction characteristic of the shearlet transform, which favours signal feature extraction. Furthermore, in calculating shearlet energy entropy, we use the correlation of shearlet coefficients to enhance the difference between signal and noise in the shearlet domain. Shearlet energy entropy makes the SVM achieve a more accurate classification result compared with other traditional features such as amplitude and energy. The results of synthetic and field data show that our method is more effective than the STA/LTA and the convolutional neural network for low-amplitude microseismic signal and desert seismic signal detection.
英文关键词Shearlet energy entropy SVM Microseismic signal Desert seismic signal Signal detection
类型Article
语种英语
开放获取类型Bronze
收录类别SCI-E
WOS记录号WOS:000573960500008
WOS关键词RANDOM NOISE ; TRANSFORM ; PICKING
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/326578
作者单位[Li, Yue; Fan, Shiyu; Zhang, Chao] Jilin Univ, Coll Commun Engn, Dept Informat, Changchun, Jilin, Peoples R China; [Yang, Baojun] Jilin Univ, Dept Geophys, Changchun, Jilin, Peoples R China
推荐引用方式
GB/T 7714
Li, Yue,Fan, Shiyu,Zhang, Chao,et al. Use of the shearlet energy entropy and of the support vector machine classifier to process weak microseismic and desert seismic signals[J],2020,352(1):103-113.
APA Li, Yue,Fan, Shiyu,Zhang, Chao,&Yang, Baojun.(2020).Use of the shearlet energy entropy and of the support vector machine classifier to process weak microseismic and desert seismic signals.COMPTES RENDUS GEOSCIENCE,352(1),103-113.
MLA Li, Yue,et al."Use of the shearlet energy entropy and of the support vector machine classifier to process weak microseismic and desert seismic signals".COMPTES RENDUS GEOSCIENCE 352.1(2020):103-113.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yue]的文章
[Fan, Shiyu]的文章
[Zhang, Chao]的文章
百度学术
百度学术中相似的文章
[Li, Yue]的文章
[Fan, Shiyu]的文章
[Zhang, Chao]的文章
必应学术
必应学术中相似的文章
[Li, Yue]的文章
[Fan, Shiyu]的文章
[Zhang, Chao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。