Arid
DOI10.5194/amt-13-4645-2020
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
El Amraoui, Laaziz; Sic, Bojan; Piacentini, Andrea; Marecal, Virginie; Frebourg, Nicolas; Attie, Jean-Luc
通讯作者El Amraoui, L
来源期刊ATMOSPHERIC MEASUREMENT TECHNIQUES
ISSN1867-1381
EISSN1867-8548
出版年2020
卷号13期号:9页码:4645-4667
英文摘要This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) chemistry transport model of Meteo-France. This assimilation module is an extension of the aerosol optical depth (AOD) assimilation system already presented by Sic et al. (2016). We focus on the period of the TRAQA (TRAnsport a longue distance et Qualite de l'Air dans le bassin mediterraneen) field campaign that took place during summer 2012. This period offers the opportunity to have access to a large set of aerosol observations from instrumented aircraft, balloons, satellite and ground-based stations. We evaluate the added value of CALIOP assimilation with respect to the model free run by comparing both fields to independent observations issued from the TRAQA field campaign. In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign. The comparison with the AERONET (Aerosol Robotic Network) AOD measurements shows that the assimilation of CALIOP lidar observations improves the statistics compared to the model free run. The correlation between AERONET and the model (assimilation) is 0.682 (0.753); the bias and the root mean square error (RMSE), due to CALIOP assimilation, are reduced from -0.063 to 0.048 and from 0.183 to 0.148, respectively. Compared to MODIS (Moderate-resolution Imaging Spectroradiometer) AOD observations, the model free run shows an underestimation of the AOD values, whereas the CALIOP assimilation corrects this underestimation and shows a quantitative good improvement in terms of AOD maps over the MB. The correlation between MODIS and the model (assimilation) during the dust outbreak is 0.47 (0.52), whereas the bias is -0.18 (-0.02) and the RMSE is 0.36 (0.30). The comparison of in situ aircraft and balloon measurements to both modelled and assimilated outputs shows that the CALIOP lidar assimilation highly improves the model aerosol field. The evaluation with the LOAC (Light Optical Particle Counter) measurements indicates that the aerosol vertical profiles are well simulated by the direct model but with a general underestimation of the aerosol number concentration, especially in the altitude range 2-5 km. The CALIOP assimilation improves these results by a factor of 2.5 to 5. Analysis of the vertical distribution of the desert aerosol concentration shows that the aerosol dust transport event is well captured by the model but with an underestimated intensity. The assimilation of CALIOP observations allows the improvement of the geographical representation of the event within the model as well as its intensity by a factor of 2 in the altitude range 1-5 km.
类型Article
语种英语
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000569147000001
WOS关键词THERMAL INFRARED INSTRUMENT ; PM10 DATA ASSIMILATION ; OPTICAL DEPTH ; STRATOSPHERIC OZONE ; SIZE-DISTRIBUTION ; IMAGING SPECTRORADIOMETER ; CALIPSO MISSION ; MLS O-3 ; MODIS ; DUST
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/326278
作者单位[El Amraoui, Laaziz; Sic, Bojan; Marecal, Virginie; Frebourg, Nicolas; Attie, Jean-Luc] Univ Toulouse, CNRS, Meteo France, CNRM, Toulouse, France; [Piacentini, Andrea] CERFACS, Toulouse, France; [Attie, Jean-Luc] Univ Toulouse, Lab Aerol, CNRS, UMR 5560, Toulouse, France; [Sic, Bojan; Frebourg, Nicolas] Noveltis, Toulouse, France
推荐引用方式
GB/T 7714
El Amraoui, Laaziz,Sic, Bojan,Piacentini, Andrea,et al. Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations[J],2020,13(9):4645-4667.
APA El Amraoui, Laaziz,Sic, Bojan,Piacentini, Andrea,Marecal, Virginie,Frebourg, Nicolas,&Attie, Jean-Luc.(2020).Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations.ATMOSPHERIC MEASUREMENT TECHNIQUES,13(9),4645-4667.
MLA El Amraoui, Laaziz,et al."Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations".ATMOSPHERIC MEASUREMENT TECHNIQUES 13.9(2020):4645-4667.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[El Amraoui, Laaziz]的文章
[Sic, Bojan]的文章
[Piacentini, Andrea]的文章
百度学术
百度学术中相似的文章
[El Amraoui, Laaziz]的文章
[Sic, Bojan]的文章
[Piacentini, Andrea]的文章
必应学术
必应学术中相似的文章
[El Amraoui, Laaziz]的文章
[Sic, Bojan]的文章
[Piacentini, Andrea]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。