Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs12152398 |
Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images | |
Cha, Mingxing; Li, Mengmeng; Wang, Xiaoqin | |
通讯作者 | Li, MM |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2020 |
卷号 | 12期号:15 |
英文摘要 | An accurate estimation of evapotranspiration (ET) from crops is crucial in irrigation management, crop yield assessment, and optimal allocation of water resources, particularly in arid regions. This study explores the estimation of seasonal evapotranspiration for crops using multisource remote sensing images. The proposed estimation framework starts with estimating daily evapotranspiration (ETd) values, which are then used to calculate ET estimates during the crop growing season (ETs). We incorporated Landsat images into the surface energy balance algorithm over land (SEBAL) model, and we used the trapezoidal and sinusoidal methods to estimate the seasonal ET. The trapezoidal method used multitemporal ET(d)images, while the sinusoidal method employs time-series Moderate Resolution Imaging Spectroradiometer (MODIS) images and multitemporal ET(d)images. Experiments were implemented in the agricultural lands of the Kai-Kong River Basin, Xinjiang, China. The experimental results show that the obtained ET(d)estimates using the SEBAL model are comparable with those from the Penman-Monteith method. The ET(s)obtained using the trapezoidal and sinusoidal methods both have a relatively high spatial resolution of 30 m. The sinusoidal method performs better than the trapezoidal method when using low temporal resolution Landsat images. We observed that the omission of Landsat images during the middle stage of crop growth has the greatest impact on the estimation results of ET(s)using the sinusoidal method. Based on the results of the study, we conclude that the proposed sinusoidal method, with integrated multisource remote sensing images, offers a useful tool in estimating seasonal evapotranspiration for crops in arid regions. |
英文关键词 | evapotranspiration SEBAL multisource remote sensing trapezoidal method sinusoidal method |
类型 | Article |
语种 | 英语 |
开放获取类型 | DOAJ Gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000567683500001 |
WOS关键词 | ENERGY BALANCE ALGORITHM ; LATENT-HEAT FLUX ; WATER REQUIREMENT ; EDDY COVARIANCE ; SURFACE ; EVAPORATION ; SELECTION ; SOIL ; PRODUCTS |
WOS类目 | Remote Sensing |
WOS研究方向 | Remote Sensing |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/326161 |
作者单位 | [Cha, Mingxing; Li, Mengmeng; Wang, Xiaoqin] Fuzhou Univ, Natl & Local Joint Engn Res Ctr Satellite Geospat, Key Lab Spatial Data Min & Informat Sharing, Acad Digital China Fujian,Minist Educ, Fuzhou 350108, Peoples R China |
推荐引用方式 GB/T 7714 | Cha, Mingxing,Li, Mengmeng,Wang, Xiaoqin. Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images[J],2020,12(15). |
APA | Cha, Mingxing,Li, Mengmeng,&Wang, Xiaoqin.(2020).Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images.REMOTE SENSING,12(15). |
MLA | Cha, Mingxing,et al."Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images".REMOTE SENSING 12.15(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。