Arid
DOI10.3390/rs12152478
GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran
Lei, Xinxiang; Chen, Wei; Avand, Mohammadtaghi; Janizadeh, Saeid; Kariminejad, Narges; Shahabi, Hejar; Costache, Romulus; Shahabi, Himan; Shirzadi, Ataollah; Mosavi, Amir
通讯作者Mosavi, A
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2020
卷号12期号:15
英文摘要In the present study, gully erosion susceptibility was evaluated for the area of the Robat Turk Watershed in Iran. The assessment of gully erosion susceptibility was performed using four state-of-the-art data mining techniques: random forest (RF), credal decision trees (CDTree), kernel logistic regression (KLR), and best-first decision tree (BFTree). To the best of our knowledge, the KLR and CDTree algorithms have been rarely applied to gully erosion modeling. In the first step, from the 242 gully erosion locations that were identified, 70% (170 gullies) were selected as the training dataset, and the other 30% (72 gullies) were considered for the result validation process. In the next step, twelve gully erosion conditioning factors, including topographic, geomorphological, environmental, and hydrologic factors, were selected to estimate gully erosion susceptibility. The area under the ROC curve (AUC) was used to estimate the performance of the models. The results revealed that the RF model had the best performance (AUC = 0.893), followed by the KLR (AUC = 0.825), the CDTree (AUC = 0.808), and the BFTree (AUC = 0.789) models. Overall, the RF model performed significantly better than the others, which may support the application of this method to a transferable susceptibility model in other areas. Therefore, we suggest using the RF, KLR, and CDT models for gully erosion susceptibility mapping in other prone areas to assess their reproducibility.
英文关键词machine learning GIS gully erosion susceptibility mapping head-cut erosion Iran
类型Article
语种英语
开放获取类型Other Gold
收录类别SCI-E
WOS记录号WOS:000559177400001
WOS关键词KERNEL LOGISTIC-REGRESSION ; FUZZY INFERENCE SYSTEM ; DATA-MINING TECHNIQUES ; REMOTE-SENSING DATA ; NAIVE BAYES TREE ; FREQUENCY RATIO ; SPATIAL PREDICTION ; RANDOM FORESTS ; DECISION TREE ; METAHEURISTIC OPTIMIZATION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/325596
作者单位[Lei, Xinxiang; Chen, Wei] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Peoples R China; [Chen, Wei] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Peoples R China; [Avand, Mohammadtaghi; Janizadeh, Saeid] Tarbiat Modares Univ, Fac Nat Resources & Marine Sci, Dept Watershed Management Engn & Sci, Tehran 14115111, Iran; [Kariminejad, Narges] Gorgan Univ Agr Sci & Nat Resources, Dept Watershed & Arid Zone Management, Gorgan 49189434, Golestan, Iran; [Shahabi, Hejar] Univ Tabriz, Dept Remote Sensing, Tabriz 5166616471, Iran; [Shahabi, Hejar] Univ Tabriz, GIS, Tabriz 5166616471, Iran; [Costache, Romulus] Univ Bucharest, Res Inst, 90-92 Sos Panduri,5th Dist, Bucharest 013686, Romania; [Costache, Romulus] Natl Inst Hydrol & Water Management, Bucuresti Ploiesti Rd 97E,1st Dist, Bucharest 013686, Romania; [Shahabi, Himan] Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran; [Shahabi, Himan] Univ Kurdistan, Kurdistan Studies Inst, Dept...
推荐引用方式
GB/T 7714
Lei, Xinxiang,Chen, Wei,Avand, Mohammadtaghi,et al. GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran[J],2020,12(15).
APA Lei, Xinxiang.,Chen, Wei.,Avand, Mohammadtaghi.,Janizadeh, Saeid.,Kariminejad, Narges.,...&Mosavi, Amir.(2020).GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran.REMOTE SENSING,12(15).
MLA Lei, Xinxiang,et al."GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran".REMOTE SENSING 12.15(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lei, Xinxiang]的文章
[Chen, Wei]的文章
[Avand, Mohammadtaghi]的文章
百度学术
百度学术中相似的文章
[Lei, Xinxiang]的文章
[Chen, Wei]的文章
[Avand, Mohammadtaghi]的文章
必应学术
必应学术中相似的文章
[Lei, Xinxiang]的文章
[Chen, Wei]的文章
[Avand, Mohammadtaghi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。