Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s13157-019-01201-7 |
Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape | |
Jarchow, Christopher J.; Sigafus, Brent H.; Muths, Erin; Hossack, Blake R. | |
通讯作者 | Jarchow, CJ |
来源期刊 | WETLANDS
![]() |
ISSN | 0277-5212 |
EISSN | 1943-6246 |
出版年 | 2020 |
卷号 | 40期号:3页码:563-575 |
英文摘要 | Many natural wetlands around the world have disappeared or been replaced, resulting in the dependence of many wildlife species on small, artificial earthen stock ponds. These ponds provide critical wildlife habitat, such that the accurate detection of water and assessment of inundation extent is required. We applied a full (linear spectral mixture analysis; LSMA) and partial (matched filtering; MF) spectral unmixing algorithm to a 2007 Landsat 5 and a 2014 Landsat 8 satellite image to determine the ability of a time-intensive (i.e., more spectral input; LSMA) vs. a more efficient (less spectral input; MF) spectral unmixing approach to detect and estimate surface water area of stock ponds in southern Arizona, USA and northern Sonora, Mexico. Spearman rank correlations (r(s)) between modeled and actual inundation areas less than a single Landsat pixel (< 900 m(2)) were low for both techniques (r(s)range = 0.22 to 0.62), but improved for inundation areas >900 m(2)(r(s)range = 0.34 to 0.70). Our results demonstrate that the MF approach can model ranked inundation extent of known pond locations with results comparable to or better than LSMA, but further refinement is required for estimating absolute inundation areas and mapping wetlands <1 Landsat pixel. |
英文关键词 | Remote sensing Spectral mixture analysis Matched filtering Stock ponds Wetlands |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000558519300010 |
WOS关键词 | SPECTRAL MIXTURE ANALYSIS ; SURFACE-WATER ; LAND-COVER ; WETLANDS ; CLASSIFICATION ; BIODIVERSITY ; COUNTY |
WOS类目 | Ecology ; Environmental Sciences |
WOS研究方向 | Environmental Sciences & Ecology |
来源机构 | University of Arizona ; United States Geological Survey |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/325552 |
作者单位 | [Jarchow, Christopher J.] Univ Arizona, Biosyst Engn, 1177 E 4th St, Tucson, AZ 85719 USA; [Sigafus, Brent H.] Univ Arizona, Southwest Biol Sci Ctr, US Geol Survey, 520 N Pk Ave, Tucson, AZ 85719 USA; [Muths, Erin] US Geol Survey, Ft Collins Sci Ctr, 2150 Ctr Ave,Bldg C, Ft Collins, CO 80526 USA; [Hossack, Blake R.] US Geol Survey, Northern Rocky Mt Sci Ctr, 800 E Beckwith Ave, Missoula, MT 59801 USA |
推荐引用方式 GB/T 7714 | Jarchow, Christopher J.,Sigafus, Brent H.,Muths, Erin,et al. Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape[J]. University of Arizona, United States Geological Survey,2020,40(3):563-575. |
APA | Jarchow, Christopher J.,Sigafus, Brent H.,Muths, Erin,&Hossack, Blake R..(2020).Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape.WETLANDS,40(3),563-575. |
MLA | Jarchow, Christopher J.,et al."Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape".WETLANDS 40.3(2020):563-575. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。