Arid
DOI10.1063/5.0006126
Stripes on finite domains: Why the zigzag instability is only a partial story
Shapira, Alon Z.; Uecker, Hannes; Yochelis, Arik
通讯作者Yochelis, A
来源期刊CHAOS
ISSN1054-1500
EISSN1089-7682
出版年2020
卷号30期号:7
英文摘要Stationary periodic patterns are widespread in natural sciences, ranging from nano-scale electrochemical and amphiphilic systems to mesoscale fluid, chemical, and biological media and to macro-scale vegetation and cloud patterns. Their formation is usually due to a primary symmetry breaking of a uniform state to stripes, often followed by secondary instabilities to form zigzag and labyrinthine patterns. These secondary instabilities are well studied under idealized conditions of an infinite domain; however, on finite domains, the situation is more subtle since the unstable modes depend also on boundary conditions. Using two prototypical models, the Swift-Hohenberg equation and the forced complex Ginzburg-Landau equation, we consider finite size domains with no flux boundary conditions transversal to the stripes and reveal a distinct mixed-mode instability that lies in between the classical zigzag and the Eckhaus lines. This explains the stability of stripes in the mildly zigzag unstable regime and, after crossing the mixed-mode line, the evolution of zigzag stripes in the bulk of the domain and the formation of defects near the boundaries. The results are of particular importance for problems with large timescale separation, such as bulk-heterojunction deformations in organic photovoltaic and vegetation in semi-arid regions, where early temporal transients may play an important role.
类型Article
语种英语
开放获取类型Green Submitted
收录类别SCI-E
WOS记录号WOS:000549985400004
WOS关键词REACTION-DIFFUSION SYSTEM ; PATTERN-FORMATION ; STABILITY ; BIFURCATION ; BOUNDARIES ; POLARIZATION ; CONTINUATION ; MECHANISMS ; POLYMER ; DESIGN
WOS类目Mathematics, Applied ; Physics, Mathematical
WOS研究方向Mathematics ; Physics
来源机构Ben-Gurion University of the Negev
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/325093
作者单位[Shapira, Alon Z.; Yochelis, Arik] Ben Gurion Univ Negev, Swiss Inst Dryland Environm & Energy Res, Blaustein Inst Desert Res, Dept Solar Energy & Environm Phys, Sede Boqer Campus, IL-8499000 Medreshet Ben Gurion, Israel; [Uecker, Hannes] Carl von Ossietzky Univ Oldenburg, Inst Math, PF 2503, D-26111 Oldenburg, Germany; [Yochelis, Arik] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
推荐引用方式
GB/T 7714
Shapira, Alon Z.,Uecker, Hannes,Yochelis, Arik. Stripes on finite domains: Why the zigzag instability is only a partial story[J]. Ben-Gurion University of the Negev,2020,30(7).
APA Shapira, Alon Z.,Uecker, Hannes,&Yochelis, Arik.(2020).Stripes on finite domains: Why the zigzag instability is only a partial story.CHAOS,30(7).
MLA Shapira, Alon Z.,et al."Stripes on finite domains: Why the zigzag instability is only a partial story".CHAOS 30.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shapira, Alon Z.]的文章
[Uecker, Hannes]的文章
[Yochelis, Arik]的文章
百度学术
百度学术中相似的文章
[Shapira, Alon Z.]的文章
[Uecker, Hannes]的文章
[Yochelis, Arik]的文章
必应学术
必应学术中相似的文章
[Shapira, Alon Z.]的文章
[Uecker, Hannes]的文章
[Yochelis, Arik]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。