Arid
DOI10.1016/j.enconman.2020.112772
A constraint multi-objective evolutionary optimization of a state-of-the-art dew point cooler using digital twins
Akhlaghi, Yousef Golizadeh; Badiei, Ali; Zhao, Xudong; Aslansefat, Koorosh; Xiao, Xin; Shittu, Samson; Ma, Xiaoli
通讯作者Zhao, XD ; Xiao, X
来源期刊ENERGY CONVERSION AND MANAGEMENT
ISSN0196-8904
EISSN1879-2227
出版年2020
卷号211
英文摘要This study is pioneered in developing digital twins using Feed-forward Neural Network (FFNN) and multi objective evolutionary optimization (MOEO) using Genetic Algorithm (GA) for a counter-flow Dew Point Cooler with a novel Guideless Irregular Heat and Mass Exchanger (GIDPC). The digital twins, takes the intake air on characteristics, i.e., temperature, relative humidity as well as main operating and design parameters, i.e., intake air velocity, working air fraction, height of HMX, channel gap, and number of layers as the inputs. GIDPC's cooling capacity, coefficient of performance (COP), dew point efficiency, wet-bulb efficiency, supply air temperature and surface area of the layers are selected as outputs. The optimum values of aforementioned operating and design parameters are identified by the MOEO to maximise the cooling capacity, COP, wet-bulb efficiencies and to minimise the surface area of the layers in four identified climates within Koppen-Geiger climate classification, namely: tropical rainforest, arid, Mediterranean hot summer and hot summer continental climates. The system monthly and annual performances in the identified optimum conditions are compared with the base system and the results show the annual improvements of up to 72.75% in COP and 23.57% in surface area. In addition, the annual power consumption is reduced by up to 49.41% when the system is designed and operated optimally. It is concluded that identifying the optimum conditions for the GIDPC can increase the system performance substantially.
英文关键词Dew point cooler Genetic algorithm Multi objective evolutionary optimization Neural network Digital twins
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000530067800029
WOS关键词INDIRECT EVAPORATIVE COOLER ; MASS-TRANSFER ; NUMERICAL-ANALYSIS ; COOLING SYSTEM ; HEAT ; PERFORMANCE ; EXCHANGERS ; CONFIGURATION ; PREDICTION ; DESIGN
WOS类目Thermodynamics ; Energy & Fuels ; Mechanics
WOS研究方向Thermodynamics ; Energy & Fuels ; Mechanics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/324392
作者单位[Akhlaghi, Yousef Golizadeh; Badiei, Ali; Zhao, Xudong; Xiao, Xin; Shittu, Samson; Ma, Xiaoli] Univ Hull, Ctr Sustainable Energy Technol, Energy & Environm Inst, Kingston Upon Hull HU6 7RX, N Humberside, England; [Aslansefat, Koorosh] Univ Hull, Dept Comp Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
推荐引用方式
GB/T 7714
Akhlaghi, Yousef Golizadeh,Badiei, Ali,Zhao, Xudong,et al. A constraint multi-objective evolutionary optimization of a state-of-the-art dew point cooler using digital twins[J],2020,211.
APA Akhlaghi, Yousef Golizadeh.,Badiei, Ali.,Zhao, Xudong.,Aslansefat, Koorosh.,Xiao, Xin.,...&Ma, Xiaoli.(2020).A constraint multi-objective evolutionary optimization of a state-of-the-art dew point cooler using digital twins.ENERGY CONVERSION AND MANAGEMENT,211.
MLA Akhlaghi, Yousef Golizadeh,et al."A constraint multi-objective evolutionary optimization of a state-of-the-art dew point cooler using digital twins".ENERGY CONVERSION AND MANAGEMENT 211(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Akhlaghi, Yousef Golizadeh]的文章
[Badiei, Ali]的文章
[Zhao, Xudong]的文章
百度学术
百度学术中相似的文章
[Akhlaghi, Yousef Golizadeh]的文章
[Badiei, Ali]的文章
[Zhao, Xudong]的文章
必应学术
必应学术中相似的文章
[Akhlaghi, Yousef Golizadeh]的文章
[Badiei, Ali]的文章
[Zhao, Xudong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。