Arid
DOI10.3390/ijerph17114132
Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions
Baddoo, Thelma Dede1,2; Li, Zhijia2; Guan, Yiqing2; Boni, Kenneth Rodolphe Chabi3; Nooni, Isaac Kwesi4,5
通讯作者Baddoo, Thelma Dede
来源期刊INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
EISSN1660-4601
出版年2020
卷号17期号:11
英文摘要The identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow data (IHACRES) model has been proven to be an efficient yet basic model to simulate rainfall-runoff processes due to the difficulty in obtaining the comprehensive data required by physical models, especially in data-scarce, semi-arid regions. The success of a calibration process is tremendously dependent on the objective function chosen. However, objective functions have been applied largely in over daily and monthly scales and seldom over sub-daily scales. This study, therefore, implements the IHACRES model using 'hydromad' in R to simulate flood events with data limitations in Zhidan, a semi-arid catchment in China. We apply objective function constraints by time aggregating the commonly used Nash-Sutcliffe efficiency into daily and hourly scales to investigate the influence of objective function constraints on the model performance and the general capability of the IHACRES model to simulate flood events in the study watershed. The results of the study demonstrated the advantage of the finer time-scaled hourly objective function over its daily counterpart in simulating runoff for the selected flood events. The results also indicated that the IHACRES model performed extremely well in the Zhidan watershed, presenting the feasibility of the use of the IHACRES model to simulate flood events in data scarce, semi-arid regions.
英文关键词data-driven modeling objective function selection Zhidan watershed IHACRES hydromad China
类型Article
语种英语
国家Peoples R China
开放获取类型Green Published, gold
收录类别SCI-E ; SSCI
WOS记录号WOS:000542629600385
WOS关键词RAINFALL-RUNOFF MODELS ; DATA TIME-STEP ; NEURAL-NETWORK ; GLOBAL OPTIMIZATION ; SENSITIVITY-ANALYSIS ; DATA QUALITY ; CALIBRATION ; PARAMETERS ; IHACRES ; PREDICTIONS
WOS类目Environmental Sciences ; Public, Environmental & Occupational Health
WOS研究方向Environmental Sciences & Ecology ; Public, Environmental & Occupational Health
来源机构南京信息工程大学 ; 河海大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/319600
作者单位1.Hohai Univ, Coll Hydrol & Water Resources, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Peoples R China;
2.Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China;
3.Hohai Univ, Coll Comp & Informat Engn, Nanjing 211100, Peoples R China;
4.Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China;
5.Nanjing Univ Informat Sci & Technol, Binjiang Coll, 333 Xishan Rd, Wuxi 214105, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Baddoo, Thelma Dede,Li, Zhijia,Guan, Yiqing,et al. Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions[J]. 南京信息工程大学, 河海大学,2020,17(11).
APA Baddoo, Thelma Dede,Li, Zhijia,Guan, Yiqing,Boni, Kenneth Rodolphe Chabi,&Nooni, Isaac Kwesi.(2020).Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions.INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH,17(11).
MLA Baddoo, Thelma Dede,et al."Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions".INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 17.11(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Baddoo, Thelma Dede]的文章
[Li, Zhijia]的文章
[Guan, Yiqing]的文章
百度学术
百度学术中相似的文章
[Baddoo, Thelma Dede]的文章
[Li, Zhijia]的文章
[Guan, Yiqing]的文章
必应学术
必应学术中相似的文章
[Baddoo, Thelma Dede]的文章
[Li, Zhijia]的文章
[Guan, Yiqing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。