Arid
DOI10.1007/s12665-020-08944-1
A comparison of machine learning models for the mapping of groundwater spring potential
Al-Fugara, A'; kif1; Pourghasemi, Hamid Reza2; Al-Shabeeb, Abdel Rahman3; Habib, Maan4; Al-Adamat, Rida3; AI-Amoush, Hani5; Collins, Adrian L.6
通讯作者Pourghasemi, Hamid Reza
来源期刊ENVIRONMENTAL EARTH SCIENCES
ISSN1866-6280
EISSN1866-6299
出版年2020
卷号79期号:10
英文摘要Groundwater resources are vitally important in arid and semi-arid areas meaning that spatial planning tools are required for their exploration and mapping. Accordingly, this research compared the predictive powers of five machine learning models for groundwater potential spatial mapping in Wadi az-Zarqa watershed in Jordan. The five models were random forest (RF), boosted regression tree (BRT), support vector machine (SVM), mixture discriminant analysis (MDA), and multivariate adaptive regression spline (MARS). These algorithms explored spatial distributions of 12 hydrological-geological-physiographical (HGP) conditioning factors (slope, altitude, profile curvature, plan curvature, slope aspect, slope length (SL), lithology, soil texture, average annual rainfall, topographic wetness index (TWI), distance to drainage network, and distance to faults) that determine where groundwater springs are located. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was employed to evaluate the prediction accuracies of the five individual models. Here the results were ranked in descending order as MDA (83.2%), RF (80.6%), SVM (80.2%), BRT (78.0%), and MARS (75.5%).The results show good potential for further use of machine learning techniques for mapping groundwater spring potential in other places where the use and management of groundwater resources is essential for sustaining rural or urban life.
英文关键词Machine learning models Groundwater mapping Geographic information system Variable importance Jordan
类型Article
语种英语
国家Jordan ; Iran ; England
收录类别SCI-E
WOS记录号WOS:000533395400001
WOS关键词SUPPORT VECTOR MACHINE ; RANDOM FOREST ; LOGISTIC-REGRESSION ; SPATIAL PREDICTION ; FREQUENCY RATIO ; NEURAL-NETWORKS ; GIS TECHNIQUES ; WEST-BENGAL ; RECHARGE ; VULNERABILITY
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Geology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/319075
作者单位1.Al Al Bayt Univ, Fac Engn, Dept Surveying Engn, Mafraq 25113, Jordan;
2.Shiraz Univ, Coll Agr, Dept Nat Resources & Environm Engn, Shiraz, Iran;
3.Al Al Bayt Univ, Inst Earth & Environm Sci, Dept GIS & Remote Sensing, Mafraq 25113, Jordan;
4.Al Balqa Appl Univ, Dept Surveying & Geomat Engn, Al Salt 19117, Jordan;
5.Al Al Bayt Univ, Inst Earth & Environm Sci, Dept Earth Sci & Environm, Mafraq 25113, Jordan;
6.Rothamsted Res, Sustainable Agr Sci, Okehampton EX20 2SB, Devon, England
推荐引用方式
GB/T 7714
Al-Fugara, A',kif,Pourghasemi, Hamid Reza,et al. A comparison of machine learning models for the mapping of groundwater spring potential[J],2020,79(10).
APA Al-Fugara, A'.,kif.,Pourghasemi, Hamid Reza.,Al-Shabeeb, Abdel Rahman.,Habib, Maan.,...&Collins, Adrian L..(2020).A comparison of machine learning models for the mapping of groundwater spring potential.ENVIRONMENTAL EARTH SCIENCES,79(10).
MLA Al-Fugara, A',et al."A comparison of machine learning models for the mapping of groundwater spring potential".ENVIRONMENTAL EARTH SCIENCES 79.10(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Al-Fugara, A']的文章
[kif]的文章
[Pourghasemi, Hamid Reza]的文章
百度学术
百度学术中相似的文章
[Al-Fugara, A']的文章
[kif]的文章
[Pourghasemi, Hamid Reza]的文章
必应学术
必应学术中相似的文章
[Al-Fugara, A']的文章
[kif]的文章
[Pourghasemi, Hamid Reza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。