Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1128/mSystems.00234-20 |
Phages Actively Challenge Niche Communities in Antarctic Soils | |
Bezuidt, Oliver K., I1; Lebre, Pedro Humberto1; Pierneef, Rian1,2; Leon-Sobrino, Carlos1; Adriaenssens, Evelien M.3; Cowan, Don A.1; Van de Peer, Yves1,4,5; Makhalanyane, Thulani P.1 | |
通讯作者 | Makhalanyane, Thulani P. |
来源期刊 | MSYSTEMS
![]() |
ISSN | 2379-5077 |
出版年 | 2020 |
卷号 | 5期号:3 |
英文摘要 | By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment. IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities. |
英文关键词 | Antarctic soils archaea bacteria hypoliths phages viromics |
类型 | Article |
语种 | 英语 |
国家 | South Africa ; England ; Belgium |
开放获取类型 | Green Published, Green Submitted, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000531078500001 |
WOS关键词 | MICROBIAL COMMUNITIES ; FUNCTIONAL-CAPACITY ; CLASSIFICATION ; DIVERSITY ; ECOLOGY ; RESISTANCE ; VIRUSES ; HOT ; MICROORGANISMS ; COEVOLUTION |
WOS类目 | Microbiology |
WOS研究方向 | Microbiology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/319018 |
作者单位 | 1.Univ Pretoria, Ctr Microbial Ecol & Genom, Dept Biochem Genet & Microbiol, Pretoria, South Africa; 2.Agr Res Council, Biotechnol Platform, Pretoria, South Africa; 3.Quadram Inst Biosci, Norwich Res Pk, Norwich, Norfolk, England; 4.Univ Ghent, Dept Plant Biotechnol & Bioinformat, Ghent, Belgium; 5.VIB, Ctr Plant Syst Biol, Ghent, Belgium |
推荐引用方式 GB/T 7714 | Bezuidt, Oliver K., I,Lebre, Pedro Humberto,Pierneef, Rian,et al. Phages Actively Challenge Niche Communities in Antarctic Soils[J],2020,5(3). |
APA | Bezuidt, Oliver K., I.,Lebre, Pedro Humberto.,Pierneef, Rian.,Leon-Sobrino, Carlos.,Adriaenssens, Evelien M..,...&Makhalanyane, Thulani P..(2020).Phages Actively Challenge Niche Communities in Antarctic Soils.MSYSTEMS,5(3). |
MLA | Bezuidt, Oliver K., I,et al."Phages Actively Challenge Niche Communities in Antarctic Soils".MSYSTEMS 5.3(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。