Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/f11040421 |
Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran | |
Viet-Ha Nhu1,2; Shirzadi, Ataollah3; Shahabi, Himan4,5; Chen, Wei6,7; Clague, John J.8; Geertsema, Marten9; Jaafari, Abolfazl10; Avand, Mohammadtaghi11; Miraki, Shaghayegh12; Asl, Davood Talebpour4; Binh Thai Pham13; Bin Ahmad, Baharin14; Lee, Saro15,16 | |
通讯作者 | Binh Thai Pham ; Lee, Saro |
来源期刊 | FORESTS
![]() |
EISSN | 1999-4907 |
出版年 | 2020 |
卷号 | 11期号:4 |
英文摘要 | We generated high-quality shallow landslide susceptibility maps for Bijar County, Kurdistan Province, Iran, using Random Forest (RAF), an ensemble computational intelligence method and three meta classifiers-Bagging (BA, BA-RAF), Random Subspace (RS, RS-RAF), and Rotation Forest (RF, RF-RAF). Modeling and validation were done on 111 shallow landslide locations using 20 conditioning factors tested by the Information Gain Ratio (IGR) technique. We assessed model performance with statistically based indexes, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). All four machine learning models that we tested yielded excellent goodness-of-fit and prediction accuracy, but the RF-RAF ensemble model (AUC = 0.936) outperformed the BA-RAF, RS-RAF (AUC = 0.907), and RAF (AUC = 0.812) models. The results also show that the Random Forest model significantly improved the predictive capability of the RAF-based classifier and, therefore, can be considered as a useful and an effective tool in regional shallow landslide susceptibility mapping. |
英文关键词 | shallow landslide machine learning goodness-of-fit over-fitting GIS Iran |
类型 | Article |
语种 | 英语 |
国家 | Vietnam ; Iran ; Peoples R China ; Canada ; Malaysia ; South Korea |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000534632500059 |
WOS关键词 | ARTIFICIAL-INTELLIGENCE APPROACH ; SUPPORT VECTOR MACHINE ; FUZZY INFERENCE SYSTEM ; EVIDENTIAL BELIEF FUNCTION ; ERROR PRUNING TREES ; LOGISTIC-REGRESSION ; SPATIAL PREDICTION ; ROTATION FOREST ; RANDOM SUBSPACE ; DECISION TREE |
WOS类目 | Forestry |
WOS研究方向 | Forestry |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/318556 |
作者单位 | 1.Ton Duc Thang Univ, Geog Informat Sci Res Grp, Ho Chi Minh City, Vietnam; 2.Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam; 3.Univ Kurdistan, Fac Nat Resources, Dept Rangeland & Watershed Management, Sanandaj 6617715175, Iran; 4.Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran; 5.Univ Kurdistan, Kurdistan Studies Inst, Dept Zrebar Lake Environm Res, Sanandaj 6617715175, Iran; 6.Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Peoples R China; 7.Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Shaanxi, Peoples R China; 8.Simon Fraser Univ, Dept Earth Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada; 9.Minist Forests Lands Nat Resource Operat & Rural, Prince George, BC V2L 1R5, Canada; 10.Res Inst Forests & Rangelands Agr Res Educ & Exte, Tehran 13185116, Iran; 11.Tarbiat Modares Univ, Fac Nat Resources & Marine Sci, Dept Watershed Management Engn & Sci, Tehran 14115111, Iran; 12.Univ Agr Sci & Nat Resources Sari, Fac Nat Resources, Dept Watershed Sci Engn, Mazandaran 4818168984, Iran; 13.Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; 14.Fac Built Environm & Surveying, Johor Baharu 81310, Malaysia; 15.Korea Inst Geosci & Mineral Resources KIGAM, Geosci Platform Res Div, 124 Gwahak Ro, Daejeon 34132, South Korea; 16.Korea Univ Sci & Technol, Dept Geophys Explorat, 217 Gajeong Ro, Daejeon 34113, South Korea |
推荐引用方式 GB/T 7714 | Viet-Ha Nhu,Shirzadi, Ataollah,Shahabi, Himan,et al. Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran[J],2020,11(4). |
APA | Viet-Ha Nhu.,Shirzadi, Ataollah.,Shahabi, Himan.,Chen, Wei.,Clague, John J..,...&Lee, Saro.(2020).Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran.FORESTS,11(4). |
MLA | Viet-Ha Nhu,et al."Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran".FORESTS 11.4(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。