Arid
DOI10.3390/w12030679
A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST, GARP, and RF Models
Moghaddam, Davoud Davoudi1; Rahmati, Omid2; Haghizadeh, Ali1; Kalantari, Zahra3,4
通讯作者Kalantari, Zahra
来源期刊WATER
EISSN2073-4441
出版年2020
卷号12期号:3
英文摘要In some arid regions, groundwater is the only source of water for human needs, so understanding groundwater potential is essential to ensure its sustainable use. In this study, three machine learning models (Genetic Algorithm for Rule-Set Production (GARP), Quick Unbiased Efficient Statistical Tree (QUEST), and Random Forest (RF)) were applied and verified for spatial prediction of groundwater in a mountain bedrock aquifer in Piranshahr Watershed, Iran. A spring location dataset consisting of 141 springs was prepared by field surveys, and from this three different sample datasets (S1-S3) were randomly generated (70% for training and 30% for validation). A total of 10 groundwater conditioning factors were prepared for modeling, namely slope percent, relative slope position (RSP), plan curvature, altitude, drainage density, slope aspect, topographic wetness index (TWI), terrain ruggedness index (TRI), land use, and lithology. The area under the receiver operating characteristic curve (AUC) and true skill statistic (TSS) were used to evaluate the accuracy of models. The results indicated that all models had excellent goodness-of-fit and predictive performance, but that RF (AUC(mean) = 0.995, TSSmean = 0.89) and GARP (AUC(mean) = 0.957, TSSmean = 0.82) outperformed QUEST (AUC(mean) = 0.949, TSSmean = 0.74). In robustness analysis, RF was slightly more sensitive than GARP and QUEST, making it necessary to consider several random partitioning options for preparing training and validation groups. The outcomes of this study can be useful in sustainable management of groundwater resources in the study region.
英文关键词spatial modeling machine-learning algorithms distribution models
类型Article
语种英语
国家Iran ; Sweden
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000529249500064
WOS关键词DECISION-TREE MODEL ; WEIGHTS-OF-EVIDENCE ; SPATIAL PREDICTION ; LOGISTIC-REGRESSION ; SUSCEPTIBILITY ASSESSMENT ; STATISTICAL-MODELS ; LANDSLIDE HAZARDS ; RIVER-BASIN ; GIS ; AREA
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/318531
作者单位1.Lorestan Univ, Agr & Nat Resources Fac, Dept Watershed Management, Khorramabad 6815144316, Iran;
2.AREEO, Soil Conservat & Watershed Management Res Dept, Kurdistan Agr & Nat Resources Res & Educ Ctr, Sanandaj 6616936311, Iran;
3.Stockholm Univ, Dept Phys Geog, SE-10691 Stockholm, Sweden;
4.Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden
推荐引用方式
GB/T 7714
Moghaddam, Davoud Davoudi,Rahmati, Omid,Haghizadeh, Ali,et al. A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST, GARP, and RF Models[J],2020,12(3).
APA Moghaddam, Davoud Davoudi,Rahmati, Omid,Haghizadeh, Ali,&Kalantari, Zahra.(2020).A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST, GARP, and RF Models.WATER,12(3).
MLA Moghaddam, Davoud Davoudi,et al."A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST, GARP, and RF Models".WATER 12.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Moghaddam, Davoud Davoudi]的文章
[Rahmati, Omid]的文章
[Haghizadeh, Ali]的文章
百度学术
百度学术中相似的文章
[Moghaddam, Davoud Davoudi]的文章
[Rahmati, Omid]的文章
[Haghizadeh, Ali]的文章
必应学术
必应学术中相似的文章
[Moghaddam, Davoud Davoudi]的文章
[Rahmati, Omid]的文章
[Haghizadeh, Ali]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。