Arid
DOI10.1007/s00704-019-02982-x
Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model
Rahmani-Rezaeieh, Aidin1; Mohammadi, Mirali1,2; Danandeh Mehr, Ali3
通讯作者Mohammadi, Mirali
来源期刊THEORETICAL AND APPLIED CLIMATOLOGY
ISSN0177-798X
EISSN1434-4483
出版年2020
卷号139期号:1-2页码:549-564
英文摘要A precise forecast of streamflow in intermittent rivers is of major difficulties and challenges in watershed management, particularly in arid and semiarid regions. The present research study introduces an ensemble gene expression programming (EGEP) modeling approach to 1- and 2-day ahead streamflow forecasts that meet both accuracy and simplicity criteria of an applied model. Three main components of the proposed EGEP approach which are capable of producing a parsimonious model include (i) creating a population of suitable solutions using classic genetic programming (GP) instead of a single solution, (ii) combining the solutions throughout gene expression programming, and (iii) parsimony selection based upon trade-off analysis between the complexity and accuracy of the best-evolved solutions at the holdout validation set. The EGEP model was trained and verified using the streamflow measurements from the Shahrchay River lying northwest of Iran. Several statistical indicators were computed for verification of the ensemble models' accuracy with that of classic GP and artificial neural network models developed as the benchmarks. Our results revealed that the EGEP outperforms the benchmarks. It is an explicit, simple, and precise approach and, therefore, worthy to be used in practice.
类型Article
语种英语
国家Iran ; Turkey
收录类别SCI-E
WOS记录号WOS:000511515200037
WOS关键词ARTIFICIAL-INTELLIGENCE METHODS ; NEURAL-NETWORKS ; WAVELET ; PERFORMANCE ; PREDICTION ; PARADIGM ; ANN
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315652
作者单位1.Islamic Azad Univ, Dept Civil Engn, Najafabad Branch, Najafabad, Iran;
2.Urmia Univ, Fac Engn, Dept Civil Engn, POB 165, Orumiyeh, Iran;
3.Antalya Bilim Univ, Dept Civil Engn, Antalya, Turkey
推荐引用方式
GB/T 7714
Rahmani-Rezaeieh, Aidin,Mohammadi, Mirali,Danandeh Mehr, Ali. Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model[J],2020,139(1-2):549-564.
APA Rahmani-Rezaeieh, Aidin,Mohammadi, Mirali,&Danandeh Mehr, Ali.(2020).Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model.THEORETICAL AND APPLIED CLIMATOLOGY,139(1-2),549-564.
MLA Rahmani-Rezaeieh, Aidin,et al."Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model".THEORETICAL AND APPLIED CLIMATOLOGY 139.1-2(2020):549-564.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rahmani-Rezaeieh, Aidin]的文章
[Mohammadi, Mirali]的文章
[Danandeh Mehr, Ali]的文章
百度学术
百度学术中相似的文章
[Rahmani-Rezaeieh, Aidin]的文章
[Mohammadi, Mirali]的文章
[Danandeh Mehr, Ali]的文章
必应学术
必应学术中相似的文章
[Rahmani-Rezaeieh, Aidin]的文章
[Mohammadi, Mirali]的文章
[Danandeh Mehr, Ali]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。