Arid
DOI10.3390/su12062539
Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa
Abubakar, Ghali Abdullahi; Wang, Ke; Shahtahamssebi, AmirReza; Xue, Xingyu; Belete, Marye; Gudo, Adam Juma Abdallah; Mohamed Shuka, Kamal Abdelrahim; Gan, Muye
通讯作者Wang, Ke
来源期刊SUSTAINABILITY
EISSN2071-1050
出版年2020
卷号12期号:6
英文摘要A timely and accurate crop type mapping is very significant, and a prerequisite for agricultural regions and ensuring global food security. The combination of remotely sensed optical and radar datasets presents an opportunity for acquiring crop information at relative spatial resolution and temporal resolution adequately to capture the growth profiles of various crop species. In this paper, we employed Sentinel-1A (S-1) and Sentinel-2A (S-2) data acquired between the end of June and early September 2016, on a semi-arid area in northern Nigeria. A different set of (VV and VH) SAR and optical (SI and SB) images, illustrating crop phenological development stage, were employed as inputs to the two machines learning Random Forest (RF) and Support Vector Machine (SVM) algorithms to automatically map maize fields. Significant increases in overall classification were shown when the multi-temporal spectral indices (SI) and spectral band (SB) datasets were added with the different integration of SAR datasets (i.e., VV and VH). The best overall accuracy (OA) for maize (96.93%) was derived by using RF classification algorithms with SI-SB-SAR datasets, although the SI datasets for RF and SB datasets for SVM also produced high overall maize classification accuracies, of 97.04% and 97.44%. The outcomes indicate the robustness of the RF or SVM methods to produce high-resolution maps of maize for subsequent application from agronomists, policy planners, and the government, because such information is lacking in our study area.
英文关键词Sentinel-1 Sentinel-2 smallholder tropical food security maize fields random forest support vector machine
类型Article
语种英语
国家Peoples R China
开放获取类型gold
收录类别SCI-E ; SSCI
WOS记录号WOS:000523751400386
WOS关键词LAND-COVER CLASSIFICATION ; RANDOM FOREST ; NDVI DATA ; SAR ; IDENTIFICATION ; DISCRIMINATION ; CLASSIFIERS ; INTEGRATION ; PERFORMANCE ; ALGORITHMS
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315639
作者单位Zhejiang Univ, Coll Environm & Resource Sci, Inst Appl Remote Sensing & Informat Technol, Hangzhou 310058, Peoples R China
推荐引用方式
GB/T 7714
Abubakar, Ghali Abdullahi,Wang, Ke,Shahtahamssebi, AmirReza,et al. Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa[J],2020,12(6).
APA Abubakar, Ghali Abdullahi.,Wang, Ke.,Shahtahamssebi, AmirReza.,Xue, Xingyu.,Belete, Marye.,...&Gan, Muye.(2020).Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa.SUSTAINABILITY,12(6).
MLA Abubakar, Ghali Abdullahi,et al."Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa".SUSTAINABILITY 12.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abubakar, Ghali Abdullahi]的文章
[Wang, Ke]的文章
[Shahtahamssebi, AmirReza]的文章
百度学术
百度学术中相似的文章
[Abubakar, Ghali Abdullahi]的文章
[Wang, Ke]的文章
[Shahtahamssebi, AmirReza]的文章
必应学术
必应学术中相似的文章
[Abubakar, Ghali Abdullahi]的文章
[Wang, Ke]的文章
[Shahtahamssebi, AmirReza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。