Arid
DOI10.3390/rs12040726
Extraction of Yardang Characteristics Using Object-Based Image Analysis and Canny Edge Detection Methods
Yuan, Weitao1,2; Zhang, Wangle3; Lai, Zhongping2; Zhang, Jingxiong4
通讯作者Lai, Zhongping
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2020
卷号12期号:4
英文摘要Parameters of geomorphological characteristics are critical for research on yardangs. However, methods which are low-cost, accurate, and automatic or semi-automatic for extracting these parameters are limited. We present here semi-automatic techniques for this purpose. They are object-based image analysis (OBIA) and Canny edge detection (CED), using free, very high spatial resolution images from Google Earth. We chose yardang fields in Dunhuang of west China to test the methods. Our results showed that the extractions registered an overall accuracy of 92.26% with a Kappa coefficient of agreement of 0.82 at a segmentation scale of 52 using the OBIA method, and the exaction of yardangs had the highest accuracy at medium segmentation scales (138, 145). Using CED, we resampled the experimental image subset to a series of lower spatial resolutions for eliminating noise. The total length of yardang boundaries showed a logarithmically decreasing (R-2 = 0.904) trend with decreasing spatial resolution, and there was also a linear relationship between yardang median widths and spatial resolutions (R-2 = 0.95). Despite the difficulty of identifying shadows, the CED method achieved an overall accuracy of 89.23% with a kappa coefficient of agreement of 0.72, similar to that of the OBIA method at medium segmentation scale (138).
英文关键词extracting yardang geomorphological characteristics object-based image analysis (OBIA) Canny edge detection (CED) free very high-resolution image in Google Earth
类型Article
语种英语
国家Peoples R China
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000519564600137
WOS关键词QAIDAM BASIN ; SEGMENTATION QUALITY ; TERRESTRIAL ANALOG ; FEATURES ; EVOLUTION ; DESERT ; CHINA ; MULTIRESOLUTION ; GEOMORPHOLOGY ; SELECTION
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315430
作者单位1.China Univ Geosci, Sch Earth Sci, Wuhan 430074, Peoples R China;
2.Shantou Univ, Guangdong Prov Key Lab Marine Biotechnol, Inst Marine Sci, Shantou 515063, Peoples R China;
3.Changan Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China;
4.Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430074, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Weitao,Zhang, Wangle,Lai, Zhongping,et al. Extraction of Yardang Characteristics Using Object-Based Image Analysis and Canny Edge Detection Methods[J],2020,12(4).
APA Yuan, Weitao,Zhang, Wangle,Lai, Zhongping,&Zhang, Jingxiong.(2020).Extraction of Yardang Characteristics Using Object-Based Image Analysis and Canny Edge Detection Methods.REMOTE SENSING,12(4).
MLA Yuan, Weitao,et al."Extraction of Yardang Characteristics Using Object-Based Image Analysis and Canny Edge Detection Methods".REMOTE SENSING 12.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Weitao]的文章
[Zhang, Wangle]的文章
[Lai, Zhongping]的文章
百度学术
百度学术中相似的文章
[Yuan, Weitao]的文章
[Zhang, Wangle]的文章
[Lai, Zhongping]的文章
必应学术
必应学术中相似的文章
[Yuan, Weitao]的文章
[Zhang, Wangle]的文章
[Lai, Zhongping]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。