Arid
DOI10.1111/nph.16381
Forecasting semi-arid biome shifts in the Anthropocene
Kulmatiski, Andrew1,2; Yu, Kailiang3,4; Mackay, D. Scott5,6; Holdrege, Martin C.1,2; Staver, Ann Carla7; Parolari, Anthony J.8; Liu, Yanlan9; Majumder, Sabiha10,11; Trugman, Anna T.12
通讯作者Kulmatiski, Andrew
来源期刊NEW PHYTOLOGIST
ISSN0028-646X
EISSN1469-8137
出版年2020
卷号226期号:2页码:351-361
英文摘要Shrub encroachment, forest decline and wildfires have caused large-scale changes in semi-arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi-arid ecosystems, yet it remains difficult to forecast large-scale vegetation shifts (i.e. biome shifts) in response to climate change. We highlight recent advances from four conceptual perspectives that are improving forecasts of semi-arid biome shifts. Moving from small to large scales, first, tree-level models that simulate the carbon costs of drought-induced plant hydraulic failure are improving predictions of delayed-mortality responses to drought. Second, tracer-informed water flow models are improving predictions of species coexistence as a function of climate. Third, new applications of ecohydrological models are beginning to simulate small-scale water movement processes at large scales. Fourth, remotely-sensed measurements of plant traits such as relative canopy moisture are providing early-warning signals that predict forest mortality more than a year in advance. We suggest that a community of researchers using modeling approaches (e.g. machine learning) that can integrate these perspectives will rapidly improve forecasts of semi-arid biome shifts. Better forecasts can be expected to help prevent catastrophic changes in vegetation states by identifying improved monitoring approaches and by prioritizing high-risk areas for management.
英文关键词carbon metabolism critical threshold early-warning signal ecohydrology ecophysiology lagged mortality machine learning niche partitioning
类型Review
语种英语
国家USA ; Switzerland ; France ; India
收录类别SCI-E
WOS记录号WOS:000519790300009
WOS关键词WOODY PLANT ENCROACHMENT ; DROUGHT-INDUCED TREE ; CLIMATE-CHANGE ; LANDSCAPE HETEROGENEITY ; SLOWING-DOWN ; MORTALITY ; ECOSYSTEMS ; DYNAMICS ; SAVANNA ; VARIABILITY
WOS类目Plant Sciences
WOS研究方向Plant Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315233
作者单位1.Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA;
2.Utah State Univ, Ctr Ecol, Logan, UT 84322 USA;
3.Swiss Fed Inst Technol, Dept Environm Syst Sci, Univ Str 16, CH-8092 Zurich, Switzerland;
4.UVSQ, LSCE, IPSL, CEA,CNRS, F-91191 Gif Sur Yvette, France;
5.SUNY Buffalo, Dept Geog, Buffalo, NY 14261 USA;
6.SUNY Buffalo, Dept Environm & Sustainabil, Buffalo, NY 14261 USA;
7.Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA;
8.Marquette Univ, Dept Civil Construct & Environm Engn, Milwaukee, WI 53233 USA;
9.Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA;
10.Indian Inst Sci, Dept Phys, Bengaluru 560012, India;
11.Indian Inst Sci, Ctr Ecol Sci, Bengaluru 560012, India;
12.Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93117 USA
推荐引用方式
GB/T 7714
Kulmatiski, Andrew,Yu, Kailiang,Mackay, D. Scott,et al. Forecasting semi-arid biome shifts in the Anthropocene[J],2020,226(2):351-361.
APA Kulmatiski, Andrew.,Yu, Kailiang.,Mackay, D. Scott.,Holdrege, Martin C..,Staver, Ann Carla.,...&Trugman, Anna T..(2020).Forecasting semi-arid biome shifts in the Anthropocene.NEW PHYTOLOGIST,226(2),351-361.
MLA Kulmatiski, Andrew,et al."Forecasting semi-arid biome shifts in the Anthropocene".NEW PHYTOLOGIST 226.2(2020):351-361.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kulmatiski, Andrew]的文章
[Yu, Kailiang]的文章
[Mackay, D. Scott]的文章
百度学术
百度学术中相似的文章
[Kulmatiski, Andrew]的文章
[Yu, Kailiang]的文章
[Mackay, D. Scott]的文章
必应学术
必应学术中相似的文章
[Kulmatiski, Andrew]的文章
[Yu, Kailiang]的文章
[Mackay, D. Scott]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。