Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1111/nph.16381 |
Forecasting semi-arid biome shifts in the Anthropocene | |
Kulmatiski, Andrew1,2; Yu, Kailiang3,4; Mackay, D. Scott5,6; Holdrege, Martin C.1,2; Staver, Ann Carla7; Parolari, Anthony J.8; Liu, Yanlan9; Majumder, Sabiha10,11; Trugman, Anna T.12 | |
通讯作者 | Kulmatiski, Andrew |
来源期刊 | NEW PHYTOLOGIST
![]() |
ISSN | 0028-646X |
EISSN | 1469-8137 |
出版年 | 2020 |
卷号 | 226期号:2页码:351-361 |
英文摘要 | Shrub encroachment, forest decline and wildfires have caused large-scale changes in semi-arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi-arid ecosystems, yet it remains difficult to forecast large-scale vegetation shifts (i.e. biome shifts) in response to climate change. We highlight recent advances from four conceptual perspectives that are improving forecasts of semi-arid biome shifts. Moving from small to large scales, first, tree-level models that simulate the carbon costs of drought-induced plant hydraulic failure are improving predictions of delayed-mortality responses to drought. Second, tracer-informed water flow models are improving predictions of species coexistence as a function of climate. Third, new applications of ecohydrological models are beginning to simulate small-scale water movement processes at large scales. Fourth, remotely-sensed measurements of plant traits such as relative canopy moisture are providing early-warning signals that predict forest mortality more than a year in advance. We suggest that a community of researchers using modeling approaches (e.g. machine learning) that can integrate these perspectives will rapidly improve forecasts of semi-arid biome shifts. Better forecasts can be expected to help prevent catastrophic changes in vegetation states by identifying improved monitoring approaches and by prioritizing high-risk areas for management. |
英文关键词 | carbon metabolism critical threshold early-warning signal ecohydrology ecophysiology lagged mortality machine learning niche partitioning |
类型 | Review |
语种 | 英语 |
国家 | USA ; Switzerland ; France ; India |
收录类别 | SCI-E |
WOS记录号 | WOS:000519790300009 |
WOS关键词 | WOODY PLANT ENCROACHMENT ; DROUGHT-INDUCED TREE ; CLIMATE-CHANGE ; LANDSCAPE HETEROGENEITY ; SLOWING-DOWN ; MORTALITY ; ECOSYSTEMS ; DYNAMICS ; SAVANNA ; VARIABILITY |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/315233 |
作者单位 | 1.Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; 2.Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; 3.Swiss Fed Inst Technol, Dept Environm Syst Sci, Univ Str 16, CH-8092 Zurich, Switzerland; 4.UVSQ, LSCE, IPSL, CEA,CNRS, F-91191 Gif Sur Yvette, France; 5.SUNY Buffalo, Dept Geog, Buffalo, NY 14261 USA; 6.SUNY Buffalo, Dept Environm & Sustainabil, Buffalo, NY 14261 USA; 7.Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA; 8.Marquette Univ, Dept Civil Construct & Environm Engn, Milwaukee, WI 53233 USA; 9.Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA; 10.Indian Inst Sci, Dept Phys, Bengaluru 560012, India; 11.Indian Inst Sci, Ctr Ecol Sci, Bengaluru 560012, India; 12.Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93117 USA |
推荐引用方式 GB/T 7714 | Kulmatiski, Andrew,Yu, Kailiang,Mackay, D. Scott,et al. Forecasting semi-arid biome shifts in the Anthropocene[J],2020,226(2):351-361. |
APA | Kulmatiski, Andrew.,Yu, Kailiang.,Mackay, D. Scott.,Holdrege, Martin C..,Staver, Ann Carla.,...&Trugman, Anna T..(2020).Forecasting semi-arid biome shifts in the Anthropocene.NEW PHYTOLOGIST,226(2),351-361. |
MLA | Kulmatiski, Andrew,et al."Forecasting semi-arid biome shifts in the Anthropocene".NEW PHYTOLOGIST 226.2(2020):351-361. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。