Arid
DOI10.1007/s11053-019-09490-9
Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms
Zamanirad, Mahtab1; Sarraf, Amirpouya2; Sedghi, Hossein1; Saremi, Ali1; Rezaee, Payman3
通讯作者Sarraf, Amirpouya
来源期刊NATURAL RESOURCES RESEARCH
ISSN1520-7439
EISSN1573-8981
出版年2020
卷号29期号:2页码:1127-1141
英文摘要Groundwater over-exploitation in arid and semiarid environments has led to many land subsidence cases. Immense economic losses incurred from land subsidence occurrences prompted many scientists to model this phenomenon. To this end, we used three machine learning models, boosted regression trees (BRTs), generalized additive model (GAM), and random forest (RF), together with four anthropological and geo-environmental predictors, to produce a spatial prediction map across land subsidence-prone area in the south of Iran. The inventory map and preparatory thematic layers were generated through extensive field surveys, using Google Earth images, local information, and organizational archives. The results revealed that the GAM significantly out-performs the BRT in terms of high goodness of fit (84.3% vs. 80.2%) and predictive power (81.6% vs. 70.1%). The RF model, as a benchmark model, showed slightly higher goodness of fit (85.45%) compared to the GAM; however, its prediction power was evidently lower than the GAM. Hence, the GAM was found as the best susceptibility model in the study area. According to the relative contribution test, the drawdown of groundwater level with 77.5% contribution was found to be the main causative predictor of land subsidence occurrence, followed by lithology (19.2%), distance from streams (2.5%), and altitude (0.8%). The results of the GAM suggest that almost 31.6% of the study area is highly susceptible zone to land subsidence occurrence, which can be of interest for further pragmatic actions.
英文关键词Land subsidence Boosted regression trees Generalized additive model GIS Kerdi Shirazi Plain
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000520600500032
WOS关键词GENERALIZED ADDITIVE-MODELS ; FUZZY INFERENCE SYSTEM ; LANDSLIDE SUSCEPTIBILITY ; SPATIAL PREDICTION ; FREQUENCY RATIO ; REGRESSION ; INFORMATION ; DECISION ; HABITAT ; BASIN
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315213
作者单位1.Islamic Azad Univ, Dept Water Engn, Sci & Res Branch, Tehran, Iran;
2.Islamic Azad Univ, Roudehen Branch, Dept Civil Engn, Roudehen, Iran;
3.Univ Hormozgan, Fac Sci, Dept Geol, Bandar Abbas, Hormuzgan, Iran
推荐引用方式
GB/T 7714
Zamanirad, Mahtab,Sarraf, Amirpouya,Sedghi, Hossein,et al. Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms[J],2020,29(2):1127-1141.
APA Zamanirad, Mahtab,Sarraf, Amirpouya,Sedghi, Hossein,Saremi, Ali,&Rezaee, Payman.(2020).Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms.NATURAL RESOURCES RESEARCH,29(2),1127-1141.
MLA Zamanirad, Mahtab,et al."Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms".NATURAL RESOURCES RESEARCH 29.2(2020):1127-1141.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zamanirad, Mahtab]的文章
[Sarraf, Amirpouya]的文章
[Sedghi, Hossein]的文章
百度学术
百度学术中相似的文章
[Zamanirad, Mahtab]的文章
[Sarraf, Amirpouya]的文章
[Sedghi, Hossein]的文章
必应学术
必应学术中相似的文章
[Zamanirad, Mahtab]的文章
[Sarraf, Amirpouya]的文章
[Sedghi, Hossein]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。