Arid
DOI10.1016/j.medin.2018.07.016
A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis
Garcia-Gallo, J. E.1; Fonseca-Ruiz, N. J.2,3; Celi, L. A.4; Duitama-Munoz, J. F.1
通讯作者Garcia-Gallo, J. E.
来源期刊MEDICINA INTENSIVA
ISSN0210-5691
EISSN1578-6749
出版年2020
卷号44期号:3页码:160-170
英文摘要Introduction: Sepsis is associated to a high mortality rate, and its severity must be evaluated quickly. The severity of illness scores used are intended to be applicable to all patient populations, and generally evaluate in-hospital mortality. However, patients with sepsis continue to be at risk of death after hospital discharge. Objective: To develop a model for predicting 1-year mortality in critical patients diagnosed with sepsis. Patients: The data corresponding to 5650 admissions of patients with sepsis from the Medical Information Mart for Intensive Care (MIMIC-III) database were evaluated, randomly divided as follows: 70% for training and 30% for validation. Design: A retrospective register-based cohort study was carried out. The clinical information of the first 24 h after admission was used to develop a 1-year mortality prediction model based on Stochastic Gradient Boosting (SGB) methodology. Variable selection was addressed using Least Absolute Shrinkage and Selection Operator (LASSO) and SGB variable importance methodologies. The predictive power was evaluated using the area under the ROC curve (AUROC). Results: An AUROC of 0.8039 (95% confidence interval (CI): [0.8033 0.80451) was obtained in the validation subset. The model exceeded the predictive performances obtained with traditional severity of disease scores in the same subset. Conclusion: The use of assembly algorithms, such as SGB, for the generation of a customized model for sepsis yields more accurate 1-year mortality prediction than the traditional scoring systems such as SAPS II, SOFA or OASIS. (C) 2018 Elsevier Espana, S.L.U. y SEMICYUC. All rights reserved.
英文关键词Prognosis prediction Sepsis Stochastic gradient boosting Intensive care unit Least absolute shrinkage and selection operator
类型Article
语种英语
国家Colombia ; USA
收录类别SCI-E
WOS记录号WOS:000521984300005
WOS关键词INTERNATIONAL CONSENSUS DEFINITIONS ; SEPTIC SHOCK ; CLINICAL-CRITERIA ; SCORE
WOS类目Critical Care Medicine
WOS研究方向General & Internal Medicine
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315158
作者单位1.Univ Antioquia UdeA, Engn & Software Invest Grp, Medellin, Colombia;
2.Medellin Clin, Crit & Intens Care, Medellin, Colombia;
3.CES Univ, Crit & Intens Care Program, Medellin, Colombia;
4.Harvard MIT Div Hlth Sci & Technol, Lab Computat Physiol, Cambridge, MA USA
推荐引用方式
GB/T 7714
Garcia-Gallo, J. E.,Fonseca-Ruiz, N. J.,Celi, L. A.,et al. A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis[J],2020,44(3):160-170.
APA Garcia-Gallo, J. E.,Fonseca-Ruiz, N. J.,Celi, L. A.,&Duitama-Munoz, J. F..(2020).A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis.MEDICINA INTENSIVA,44(3),160-170.
MLA Garcia-Gallo, J. E.,et al."A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis".MEDICINA INTENSIVA 44.3(2020):160-170.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Garcia-Gallo, J. E.]的文章
[Fonseca-Ruiz, N. J.]的文章
[Celi, L. A.]的文章
百度学术
百度学术中相似的文章
[Garcia-Gallo, J. E.]的文章
[Fonseca-Ruiz, N. J.]的文章
[Celi, L. A.]的文章
必应学术
必应学术中相似的文章
[Garcia-Gallo, J. E.]的文章
[Fonseca-Ruiz, N. J.]的文章
[Celi, L. A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。