Arid
DOI10.1007/s12205-020-1889-x
Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study
Samantaray, Sandeep; Sahoo, Abinash; Ghose, Dillip K.
通讯作者Samantaray, Sandeep
来源期刊KSCE JOURNAL OF CIVIL ENGINEERING
ISSN1226-7988
EISSN1976-3808
出版年2020
卷号24期号:6页码:1944-1957
英文摘要Improvement in area of artificial intelligence for predicting different hydrological phenomenon has shaped an enormous alteration in predictions. Knowledge on suspended sediment load (SSL) is vital in managing water resources problems and safe guard environment. Present study evaluated accurateness of five soft computing techniques, i.e. radial basis function network (RBFN), cascade forward back propagation neural network (CFBPNN), support vector machine (SVM), integration of support vector machine with firefly algorithm (SVM-FFA) and phase space reconstruction (PSR) with SVM-FFA (PSR-SVM-FFA) approaches to estimate daily SSL in Salebhata, Suktel, Lant gauge stations in western part of Odisha, India. Performance of selected models were evaluated on basis of performance criterion namely root mean square error (RMSE), Nash-Sutcliffe (NSE), Wilton index (WI) for choosing best fit model. Results acquired verified that application of various neural network methods in present field of study showed fine concurrence with observed SSL values. Comparison of estimation accuracies of different methods exemplified that PSR-SVM-FFA is very precise to estimate SSL when compared with other models. Result shows that Suktel gauge station, the best value of WI is 0.978 for PSR-SVM-FFA model, while it is 0.959, 0.923, 0.885, and 0.842 for SVM-FFA, SVM, CFBPNN, RBFN models in testing phase. Moreover, cumulative SSL data calculated by PSR-SVM-FFA method are closer to observed data as compared to other methods.
英文关键词PSR-SVM-FFA River basin Sediment SVM SVM-FFA
类型Article
语种英语
国家India
收录类别SCI-E
WOS记录号WOS:000528430200005
WOS关键词ARTIFICIAL NEURAL-NETWORK ; MULTILAYER PERCEPTRON ; PREDICTION ; ANN ; WAVELET ; MODEL ; TRANSPORT ; RIVER ; ALGORITHM ; YIELD
WOS类目Engineering, Civil
WOS研究方向Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/315117
作者单位NIT Silchar, Dept Civil Engn, Silchar 788010, Assam, India
推荐引用方式
GB/T 7714
Samantaray, Sandeep,Sahoo, Abinash,Ghose, Dillip K.. Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study[J],2020,24(6):1944-1957.
APA Samantaray, Sandeep,Sahoo, Abinash,&Ghose, Dillip K..(2020).Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study.KSCE JOURNAL OF CIVIL ENGINEERING,24(6),1944-1957.
MLA Samantaray, Sandeep,et al."Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study".KSCE JOURNAL OF CIVIL ENGINEERING 24.6(2020):1944-1957.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samantaray, Sandeep]的文章
[Sahoo, Abinash]的文章
[Ghose, Dillip K.]的文章
百度学术
百度学术中相似的文章
[Samantaray, Sandeep]的文章
[Sahoo, Abinash]的文章
[Ghose, Dillip K.]的文章
必应学术
必应学术中相似的文章
[Samantaray, Sandeep]的文章
[Sahoo, Abinash]的文章
[Ghose, Dillip K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。