Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/hess-24-1485-2020 |
Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling | |
Pan, Shufen1; Pan, Naiqing1,2; Tian, Hanqin1; Friedlingstein, Pierre3; Sitch, Stephen4; Shi, Hao1; Arora, Vivek K.5; Haverd, Vanessa6; Jain, Atul K.7; Kato, Etsushi8; Lienert, Sebastian9; Lombardozzi, Danica10; Nabel, Julia E. M. S.11; Otte, Catherine12; Poulter, Benjamin13; Zaehle, Soenke14; Running, Steven W.15 | |
通讯作者 | Pan, Shufen |
来源期刊 | HYDROLOGY AND EARTH SYSTEM SCIENCES
![]() |
ISSN | 1027-5606 |
EISSN | 1607-7938 |
出版年 | 2020 |
卷号 | 24期号:3页码:1485-1509 |
英文摘要 | Evapotranspiration (ET) is critical in linking global water, carbon and energy cycles. However, direct measurement of global terrestrial ET is not feasible. Here, we first reviewed the basic theory and state-of-the-art approaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and land surface models (LSMs). We then utilized 4 remote-sensing-based physical models, 2 machine-learning algorithms and 14 LSMs to analyze the spatial and temporal variations in global terrestrial ET. The results showed that the ensemble means of annual global terrestrial ET estimated by these three categories of approaches agreed well, with values ranging from 589.6 mm yr(-1) (6.56 x 10(4) km(3) yr(-1)) to 617.1 mm yr(-1) (6.87 x 10(4) km(3) yr(-1)). For the period from 1982 to 2011, both the ensembles of remote-sensing-based physical models and machine-learning algorithms suggested increasing trends in global terrestrial ET (0.62 mm yr(-2) with a significance level of p < 0.05 and 0.38 mm yr(-2) with a significance level of p < 0.05, respectively). In contrast, the ensemble mean of the LSMs showed no statistically significant change (0.23 mm yr(-2), p > 0.05), although many of the individual LSMs reproduced an increasing trend. Nevertheless, all 20 models used in this study showed that anthropogenic Earth greening had a positive role in increasing terrestrial ET. The concurrent small interannual variability, i.e., relative stability, found in all estimates of global terrestrial ET, suggests that a potential planetary boundary exists in regulating global terrestrial ET, with the value of this boundary being around 600mm yr(-1). Uncertainties among approaches were identified in specific regions, particularly in the Amazon Basin and arid/semiarid regions. Improvements in parameterizing water stress and canopy dynamics, the utilization of new available satellite retrievals and deep-learning methods, and model-data fusion will advance our predictive understanding of global terrestrial ET. |
类型 | Article |
语种 | 英语 |
国家 | USA ; Peoples R China ; England ; Canada ; Australia ; Japan ; Switzerland ; Germany ; France |
开放获取类型 | Green Submitted, gold, Green Published |
收录类别 | SCI-E |
WOS记录号 | WOS:000522832500001 |
WOS关键词 | SUPPORT VECTOR MACHINE ; PLANT FUNCTIONAL TYPES ; ATMOSPHERE WATER FLUX ; LATENT-HEAT FLUX ; LEAF-AREA INDEX ; VEGETATION INDEX ; EDDY COVARIANCE ; NEURAL-NETWORKS ; CLIMATE MODELS ; USE EFFICIENCY |
WOS类目 | Geosciences, Multidisciplinary ; Water Resources |
WOS研究方向 | Geology ; Water Resources |
来源机构 | Commonwealth Scientific and Industrial Research Organisation |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/314699 |
作者单位 | 1.Auburn Univ, Int Ctr Climate & Global Change Res, Sch Forestry & Wildlife Sci, Auburn, AL 36832 USA; 2.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China; 3.Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England; 4.Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England; 5.Univ Victoria, Canadian Ctr Climate Modelling & Anal, Environm Canada, Victoria, BC V8W 2Y2, Canada; 6.CSIRO Oceans & Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia; 7.Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA; 8.IAE, Minato Ku, Tokyo 1050003, Japan; 9.Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland; 10.Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80305 USA; 11.Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany; 12.Orme Des Merisiers, LSCE IPSL CNRS, F-91191 Gif Sur Yvette, France; 13.NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 916, Greenbelt, MD 20771 USA; 14.Max Planck Inst Biogeochem, POB 600164,Hans Knoll Str 10, D-07745 Jena, Germany; 15.Univ Montana, Coll Forestry & Conservat, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA |
推荐引用方式 GB/T 7714 | Pan, Shufen,Pan, Naiqing,Tian, Hanqin,et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling[J]. Commonwealth Scientific and Industrial Research Organisation,2020,24(3):1485-1509. |
APA | Pan, Shufen.,Pan, Naiqing.,Tian, Hanqin.,Friedlingstein, Pierre.,Sitch, Stephen.,...&Running, Steven W..(2020).Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling.HYDROLOGY AND EARTH SYSTEM SCIENCES,24(3),1485-1509. |
MLA | Pan, Shufen,et al."Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling".HYDROLOGY AND EARTH SYSTEM SCIENCES 24.3(2020):1485-1509. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。