Arid
DOI10.1080/10106049.2020.1720314
Spatial stochastic model for predicting soil organic matter using remote sensing data
Mallick, Javed1; Ahmed, Mohd1; Alqadhi, Saeed Dhafer1; Falqi, Ibrahim I.1; Parayangat, Muneer2; Singh, Chander Kumar3; Rahman, Atiqur4; Ijyas, Thafasal2
通讯作者Mallick, Javed
来源期刊GEOCARTO INTERNATIONAL
ISSN1010-6049
EISSN1752-0762
出版年2020-03
英文摘要Accurate soil organic matter (SOM) estimation could provide critical information to understand soil organic carbon sequestration, soil fertility, and the global carbon cycle. A nearest-neighbourhood autoregressive moving average (NN-ARMA) modelling technique along with linear regression has been used to predict localized soil SOM variation based on topographical characteristics and vegetation indices in semi-arid region of Saudi Arabia. Seven topographic variables derived using DEM, and twelve vegetation indices obtained from Landsat 8 used in the model. The best NN-ARMA model showed seven significant variables explaining 96.4% of the total variation of SOM, whereas the best linear regression model could explain 78.8% of the total variation of SOM. The results showed that NN-ARMA model gave better results compared to the linear regression model. Our research gave a better understanding of the possibility of accurate estimation of SOM using the NN-ARMA approach using topographical characteristics and vegetation indices easily acquired by RS sensors.
英文关键词Soil organic matter semi-arid region nearest-neighbourhood ARMA linear regression topographic variables vegetation indices
类型Article ; Early Access
语种英语
国家Saudi Arabia ; India
收录类别SCI-E
WOS记录号WOS:000519408600001
WOS关键词LEAF-AREA INDEX ; VEGETATION INDEXES ; CARBON STOCKS ; VARIABILITY ; REGRESSION ; DERIVATION ; STABILITY ; SURFACE ; LINE ; BAND
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/314576
作者单位1.King Khalid Univ, Coll Engn, Dept Civil Engn, Abha, Saudi Arabia;
2.King Khalid Univ, Coll Engn, Dept Elect Engn, Abha, Saudi Arabia;
3.TERI Sch Adv Studies, Dept Energy & Environm, New Delhi, India;
4.Jamia Millia Islamia, Fac Nat Sci, Urban Environm & Remote Sensing Div, New Delhi, India
推荐引用方式
GB/T 7714
Mallick, Javed,Ahmed, Mohd,Alqadhi, Saeed Dhafer,et al. Spatial stochastic model for predicting soil organic matter using remote sensing data[J],2020.
APA Mallick, Javed.,Ahmed, Mohd.,Alqadhi, Saeed Dhafer.,Falqi, Ibrahim I..,Parayangat, Muneer.,...&Ijyas, Thafasal.(2020).Spatial stochastic model for predicting soil organic matter using remote sensing data.GEOCARTO INTERNATIONAL.
MLA Mallick, Javed,et al."Spatial stochastic model for predicting soil organic matter using remote sensing data".GEOCARTO INTERNATIONAL (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mallick, Javed]的文章
[Ahmed, Mohd]的文章
[Alqadhi, Saeed Dhafer]的文章
百度学术
百度学术中相似的文章
[Mallick, Javed]的文章
[Ahmed, Mohd]的文章
[Alqadhi, Saeed Dhafer]的文章
必应学术
必应学术中相似的文章
[Mallick, Javed]的文章
[Ahmed, Mohd]的文章
[Alqadhi, Saeed Dhafer]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。