Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/10106049.2020.1720314 |
Spatial stochastic model for predicting soil organic matter using remote sensing data | |
Mallick, Javed1; Ahmed, Mohd1; Alqadhi, Saeed Dhafer1; Falqi, Ibrahim I.1; Parayangat, Muneer2; Singh, Chander Kumar3; Rahman, Atiqur4; Ijyas, Thafasal2 | |
通讯作者 | Mallick, Javed |
来源期刊 | GEOCARTO INTERNATIONAL
![]() |
ISSN | 1010-6049 |
EISSN | 1752-0762 |
出版年 | 2020-03 |
英文摘要 | Accurate soil organic matter (SOM) estimation could provide critical information to understand soil organic carbon sequestration, soil fertility, and the global carbon cycle. A nearest-neighbourhood autoregressive moving average (NN-ARMA) modelling technique along with linear regression has been used to predict localized soil SOM variation based on topographical characteristics and vegetation indices in semi-arid region of Saudi Arabia. Seven topographic variables derived using DEM, and twelve vegetation indices obtained from Landsat 8 used in the model. The best NN-ARMA model showed seven significant variables explaining 96.4% of the total variation of SOM, whereas the best linear regression model could explain 78.8% of the total variation of SOM. The results showed that NN-ARMA model gave better results compared to the linear regression model. Our research gave a better understanding of the possibility of accurate estimation of SOM using the NN-ARMA approach using topographical characteristics and vegetation indices easily acquired by RS sensors. |
英文关键词 | Soil organic matter semi-arid region nearest-neighbourhood ARMA linear regression topographic variables vegetation indices |
类型 | Article ; Early Access |
语种 | 英语 |
国家 | Saudi Arabia ; India |
收录类别 | SCI-E |
WOS记录号 | WOS:000519408600001 |
WOS关键词 | LEAF-AREA INDEX ; VEGETATION INDEXES ; CARBON STOCKS ; VARIABILITY ; REGRESSION ; DERIVATION ; STABILITY ; SURFACE ; LINE ; BAND |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/314576 |
作者单位 | 1.King Khalid Univ, Coll Engn, Dept Civil Engn, Abha, Saudi Arabia; 2.King Khalid Univ, Coll Engn, Dept Elect Engn, Abha, Saudi Arabia; 3.TERI Sch Adv Studies, Dept Energy & Environm, New Delhi, India; 4.Jamia Millia Islamia, Fac Nat Sci, Urban Environm & Remote Sensing Div, New Delhi, India |
推荐引用方式 GB/T 7714 | Mallick, Javed,Ahmed, Mohd,Alqadhi, Saeed Dhafer,et al. Spatial stochastic model for predicting soil organic matter using remote sensing data[J],2020. |
APA | Mallick, Javed.,Ahmed, Mohd.,Alqadhi, Saeed Dhafer.,Falqi, Ibrahim I..,Parayangat, Muneer.,...&Ijyas, Thafasal.(2020).Spatial stochastic model for predicting soil organic matter using remote sensing data.GEOCARTO INTERNATIONAL. |
MLA | Mallick, Javed,et al."Spatial stochastic model for predicting soil organic matter using remote sensing data".GEOCARTO INTERNATIONAL (2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。