Arid
DOI10.3390/en13030689
Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction
McCandless, Tyler; Dettling, Susan; Haupt, Sue Ellen
通讯作者McCandless, Tyler
来源期刊ENERGIES
EISSN1996-1073
出版年2020
卷号13期号:3
英文摘要This work compares the solar power forecasting performance of tree-based methods that include implicit regime-based models to explicit regime separation methods that utilize both unsupervised and supervised machine learning techniques. Previous studies have shown an improvement utilizing a regime-based machine learning approach in a climate with diverse cloud conditions. This study compares the machine learning approaches for solar power prediction at the Shagaya Renewable Energy Park in Kuwait, which is in an arid desert climate characterized by abundant sunshine. The regime-dependent artificial neural network models undergo a comprehensive parameter and hyperparameter tuning analysis to minimize the prediction errors on a test dataset. The final results that compare the different methods are computed on an independent validation dataset. The results show that the tree-based methods, the regression model tree approach, performs better than the explicit regime-dependent approach. These results appear to be a function of the predominantly sunny conditions that limit the ability of an unsupervised technique to separate regimes for which the relationship between the predictors and the predictand would differ for the supervised learning technique.
英文关键词solar power forecasting machine learning artificial intelligence regression tree artificial neural networks unsupervised learning supervised learning regime-identification
类型Article
语种英语
国家USA
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:000522489000182
WOS关键词FORECASTING METHODS ; SYSTEM ; MODEL
WOS类目Energy & Fuels
WOS研究方向Energy & Fuels
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/314391
作者单位Natl Ctr Atmospher Res, Boulder, CO 80305 USA
推荐引用方式
GB/T 7714
McCandless, Tyler,Dettling, Susan,Haupt, Sue Ellen. Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction[J],2020,13(3).
APA McCandless, Tyler,Dettling, Susan,&Haupt, Sue Ellen.(2020).Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction.ENERGIES,13(3).
MLA McCandless, Tyler,et al."Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction".ENERGIES 13.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McCandless, Tyler]的文章
[Dettling, Susan]的文章
[Haupt, Sue Ellen]的文章
百度学术
百度学术中相似的文章
[McCandless, Tyler]的文章
[Dettling, Susan]的文章
[Haupt, Sue Ellen]的文章
必应学术
必应学术中相似的文章
[McCandless, Tyler]的文章
[Dettling, Susan]的文章
[Haupt, Sue Ellen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。