Arid
DOI10.3390/electronics9020289
Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets
Chen, Biaowei1,2,3; Lin, Peijie1,2,3; Lai, Yunfeng1,2,3; Cheng, Shuying1,2,3; Chen, Zhicong1,2,3; Wu, Lijun1,2,3
通讯作者Lin, Peijie
来源期刊ELECTRONICS
EISSN2079-9292
出版年2020
卷号9期号:2
英文摘要Improving the accuracy of very-short-term (VST) photovoltaic (PV) power generation prediction can effectively enhance the quality of operational scheduling of PV power plants, and provide a reference for PV maintenance and emergency response. In this paper, the effects of different meteorological factors on PV power generation as well as the degree of impact at different time periods are analyzed. Secondly, according to the characteristics of radiation coordinate, a simple radiation classification coordinate (RCC) method is proposed to classify and select similar time periods. Based on the characteristics of PV power time-series, the selected similar time period dataset (include power output and multivariate meteorological factors data) is reconstructed as the training dataset. Then, the long short-term memory (LSTM) recurrent neural network is applied as the learning network of the proposed model. The proposed model is tested on two independent PV systems from the Desert Knowledge Australia Solar Centre (DKASC) PV data. The proposed model achieving mean absolute percentage error of 2.74-7.25%, and according to four error metrics, the results show that the robustness and accuracy of the RCC-LSTM model are better than the other four comparison models.
英文关键词photovoltaic power generation long short-term memory very short-term Power prediction similarity time period
类型Article
语种英语
国家Peoples R China
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000518412200089
WOS关键词RENEWABLE ENERGY ; NEURAL-NETWORKS ; HYBRID METHOD ; SOLAR ; GENERATION ; OUTPUT ; OPTIMIZATION ; SYSTEMS ; BENEFIT ; COST
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS研究方向Computer Science ; Engineering ; Physics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/314387
作者单位1.Fuzhou Univ, Sch Phys & Informat Engn, Fuzhou 350108, Peoples R China;
2.Fuzhou Univ, Inst Micronano Devices & Solar Cells, Fuzhou 350108, Peoples R China;
3.Jiangsu Collaborat Innovat Ctr Photovolta Sci & E, Changzhou 21316, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Chen, Biaowei,Lin, Peijie,Lai, Yunfeng,et al. Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets[J],2020,9(2).
APA Chen, Biaowei,Lin, Peijie,Lai, Yunfeng,Cheng, Shuying,Chen, Zhicong,&Wu, Lijun.(2020).Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets.ELECTRONICS,9(2).
MLA Chen, Biaowei,et al."Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets".ELECTRONICS 9.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Biaowei]的文章
[Lin, Peijie]的文章
[Lai, Yunfeng]的文章
百度学术
百度学术中相似的文章
[Chen, Biaowei]的文章
[Lin, Peijie]的文章
[Lai, Yunfeng]的文章
必应学术
必应学术中相似的文章
[Chen, Biaowei]的文章
[Lin, Peijie]的文章
[Lai, Yunfeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。